
OpenFPGA Documentation
Release 1.2.2022

Xifan Tang

Apr 20, 2024

OVERVIEW

1 Why OpenFPGA? 1
1.1 Fully Customizable Architecture . 2
1.2 FPGA-Verilog . 3
1.3 FPGA-SDC . 3
1.4 FPGA-Bitstream . 4
1.5 FPGA-SPICE . 4

2 Technical Highlights 5
2.1 Supported Circuit Designs . 7
2.2 Supported FPGA Architectures . 8
2.3 Supported Verilog Modeling . 8

3 Getting Started 9
3.1 How to Compile . 9
3.2 OpenFPGA Shell Commands . 15
3.3 Supported Tools . 16

4 Design Flows 17
4.1 Generate Fabric Netlists . 17
4.2 From Verilog to Verification . 18
4.3 From Verilog to GDSII . 21

5 Architecture Modeling 23
5.1 A Quick Start . 23
5.2 Integrating Custom Verilog Modules with user_defined_template.v 35
5.3 Build an FPGA fabric using Standard Cell Libraries . 39
5.4 Creating Spypads Using XML Syntax . 48

6 OpenFPGA Flow 55
6.1 OpenFPGA Flow . 55
6.2 OpenFPGA Task . 59

7 OpenFPGA Architecture Description 67
7.1 General Hierarchy . 67
7.2 Additional Syntax to Original VPR XML . 68
7.3 Configuration Protocol . 72
7.4 Inter-Tile Direct Interconnection extensions . 82
7.5 Simulation settings . 84
7.6 Technology library . 91
7.7 Circuit Library . 93
7.8 Circuit model examples . 105

i

7.9 Bind circuit modules to VPR architecture . 138
7.10 Fabric Key . 146

8 OpenFPGA Shell 149
8.1 Launch OpenFPGA Shell . 149
8.2 OpenFPGA Script Format . 149
8.3 Commands . 151

9 FPGA-SPICE 177
9.1 Command-line Options . 177
9.2 Hierarchy of SPICE Output Files . 178
9.3 Run SPICE simulation . 179
9.4 Create Customized SPICE Modules . 180

10 FPGA-Verilog 181
10.1 Fabric Netlists . 181
10.2 Testbench . 185
10.3 Mock FPGA Wrapper . 186

11 FPGA-Bitstream 189
11.1 Generic Bitstream . 189
11.2 Fabric-dependent Bitstream . 189

12 File Formats 191
12.1 Pin Constraints File (.xml) . 191
12.2 Repack Design Constraints (.xml) . 192
12.3 Architecture Bitstream (.xml) . 193
12.4 Fabric-dependent Bitstream . 195
12.5 Bitstream Setting (.xml) . 199
12.6 Fabric Key (.xml) . 201
12.7 I/O Mapping File (.xml) . 207
12.8 I/O Information File (.xml) . 208
12.9 Bitstream Distribution File (.xml) . 209
12.10 Bus Group File (.xml) . 210
12.11 Pin Constraints File (.pcf) . 211
12.12 Pin Table File (.csv) . 211
12.13 Clock Network (.xml) . 212
12.14 Fabric I/O Naming (.xml) . 216
12.15 Fabric Module Naming (.xml) . 218
12.16 Tile Organization (.xml) . 219
12.17 Fabric Pin Physical Location File (.xml) . 220

13 Utilities 223
13.1 Fabric Key Assistant . 223
13.2 Module Rename Assistant . 224

14 Version Number 227
14.1 Convention . 227
14.2 Version Update Rules . 227

15 Backward compatibility 229
15.1 OpenFPGA v1.1 . 229

16 CI/CD setup 231
16.1 How to debug failed regression test . 232

ii

16.2 Release Docker Images . 232
16.3 CI after cloning repository . 232

17 Regression Tests 233
17.1 Run a Test . 233
17.2 Test Options . 233

18 Tcl API 235

19 Contact 237

20 Acknowledgement 239

21 Publications & References 241

22 Indices and tables 243

Bibliography 245

Index 247

iii

iv

CHAPTER

ONE

WHY OPENFPGA?

Note: If this is your first time learning OpenFPGA, we strongly recommend you to watch the introduction video

OpenFPGA aims to be an open-source framework that enables rapid prototyping of customizable FPGA architectures.
As shown in Fig. 1.1, a conventional approach will take a large group of experienced engineers more than one year to
achieve production-ready layout and associated CAD tools. In fact, most of the engineering efforts are spent on manual
layouts and developing ad-hoc CAD support.

Fig. 1.1: Comparison on engineering time and effort to prototype an FPGA using OpenFPGA and conventional ap-
proaches [All the layout figures are publishable under the proper licenses]

Using OpenFPGA, the development cycle in both hardware and software can be significantly accelerated. OpenFPGA
can automatically generate Verilog netlists describing a full FPGA fabric based on an XML-based description file.
Thanks to modern semi-custom design tools, production-ready layout generation can be achieved within 24 hours.
To help sign-off, OpenFPGA can auto-generate Verilog testbenches to validate the correctness of FPGA fabric using
modern verification tools. OpenFPGA also provides native bitstream generation support based on the same XML-based

1

https://youtu.be/ocODUGcYGqo

OpenFPGA Documentation, Release 1.2.2022

description file used in Verilog generation, avoiding the recurring engineering in developing CAD tools for different
FPGAs. Once the FPGA architecture is finalized, the CAD tool is ready to use.

OpenFPGA can support any architecture that VPR can describe, covering most of the architecture enhancements avail-
able in modern FPGAs, and hence unlocks a large design space in prototyping customizable FPGAs. In addition,
OpenFPGA provides enriched syntax which allows users to customize primitive circuits designed down to transistor-
level parameters. This helps developers to customize the P.P.A. (Power, Performance and Area) to the best. All these
features open the door of prototyping/studying flexible FPGAs to a small group of junior engineers or researchers.

In terms of tool functionality, OpenFPGA consists of the following parts: FPGA-Verilog, FPGA-SDC, FPGA-Bitstream
and FPGA-SPICE. The rest of this section will focus on detailed motivation for each of them, as depicted in Fig. 1.2.

Fig. 1.2: OpenFPGA: a unified framework for chip designer and FPGA programmer

1.1 Fully Customizable Architecture

OpenFPGA supports VPR’s architecture description language, which allows users to define versatile programmable
fabrics down to point-to-point interconnection. OpenFPGA leverages VPR’s architecture description by introducing an
XML-based architecture annotation, enabling fully customizable FPGA fabric down to circuit elements. As illustrated
in OpenFPGA architecture description language enabling fully customizable FPGA architecture and circuit-level im-
plementation, OpenFPGA’s architecture annotation covers a complete FPGA fabric, including both the programmable
fabric and the configuration peripheral.

Fig. 1.3: OpenFPGA architecture description language enabling fully customizable FPGA architecture and circuit-level
implementation

The technical details can be found in our papers [TGMG19] [TGA+19].

2 Chapter 1. Why OpenFPGA?

OpenFPGA Documentation, Release 1.2.2022

1.2 FPGA-Verilog

Driven by the strong need in data processing applications, Field Programmable Gate Arrays (FPGAs) are playing an
ever-increasing role as programmable accelerators in modern computing systems. To fully unlock processing capa-
bilities for domain-specific applications, FPGA architectures have to be tailored for seamless cooperation with other
computing resources. However, prototyping and bringing to production a customized FPGA is a costly and complex
endeavor even for industrial vendors.

OpenFPGA, an opensource framework, aims to rapidly prototype customizable FPGA architectures through a semi-
custom design approach. We propose an XML-to-Prototype design flow, where the Verilog netlists of a full FPGA
fabric can be autogenerated using an extension of the XML language from the VTR framework and then fed into a
back-end flow to generate production-ready layouts. FPGA-Verilog is designed to output flexible and standard Verilog
netlists, enabling various backend choices, as illustrated in FPGA-Verilog enabling flexible backend flows.

Fig. 1.4: FPGA-Verilog enabling flexible backend flows

The technical details can be found in our papers [TGC+20] [TGG+20] [GTG21]

1.3 FPGA-SDC

Design constraints are indepensible in modern ASIC design flows to guarantee the performance level. OpenFPGA
includes a rich SDC generator in the OpenFPGA framework to deal with both PnR constraints and sign-off timing
analysis. Our flow automatically generates two sets of SDC files.

• The first set of SDC is designed for the P&R flow, where all the combinational loops are broken to enable well
controlled timing-driven P&R. In addition, there are SDC files devoted to constrain pin-to-pin timing for all the
resources in FPGAs, in order to obtain nicely constrained and homogeneous delays across the fabric. OpenFPGA
allows users to define timing constraints in the architecture description and outputs timing constraints in standard
format, enabling fully timing constrained backend flow (see FPGA-SDC enabling iterative timing constrained
backend flow).

• The second set of SDC is designed for the timing analysis of a benchmark at the post P&R stage.

Fig. 1.5: FPGA-SDC enabling iterative timing constrained backend flow

The technical details can be found in our papers [TGA+19] [TGC+20] [TGG+20].

1.2. FPGA-Verilog 3

OpenFPGA Documentation, Release 1.2.2022

1.4 FPGA-Bitstream

EDA support is essential for end-users to implement designs on a customized FPGA. OpenFPGA provides a general-
purpose bitstream generator FPGA-Bitstream for any architecture that can be described by VPR. As the native CAD tool
for any customized FPGA that is produced by FPGA-Verilog, FPGA-Bitstream is ready to use once users finalize the
XML-based architecture description file. This eliminates the huge engineering efforts spent on developing bitstream
generators for customized FPGAs. Using FPGA-Bitstream, users can launch (1) Verilog-to-Bitstream flow, the typical
implementation flow for end-users; (2) Verilog-to-Verification flow. OpenFPGA can output Verilog testbenches with
self-testing features to validate users’ implemetations on their customized FPGA fabrics.

The technical details can be found in our papers [TGMG19] [TGA+19].

1.5 FPGA-SPICE

The built-in timing and power analysis engines of VPR are based on analytical models [BRM99, GW12]. Analytical
model-based analysis can promise accuracy only on a limited number of circuit designs for which the model is valid.
As the technology advancements create more opportunities on circuit designs and FPGA architectures, the analytical
power model requires updates to follow the new trends. However, without referring to simulation results, the analytical
power models cannot prove their accuracy. SPICE simulators have the advantages of generality and accuracy over
analytical models. For this reason, SPICE simulation results are often selected to check the accuracy of analytical
models. Therefore, there is a strong need for a simulation-based power analysis approach for FPGAs, which can support
general circuit designs.

It motivates us to develop FPGA-SPICE, an add-on for the current State-of-Art FPGA architecture exploration tools,
VPR [RLY+12]. FPGA-SPICE aims at generating SPICE netlists and testbenches for the FPGA architectures supported
by VPR. The SPICE netlists and testbenches are generated according to the placement and routing results of VPR. As
a result, SPICE simulator can be used to perform precise delay and power analysis. The SPICE simulation results
are useful in three aspects: (1) they provide accurate power analysis; (2) they help to improve the accuracy of built-in
analytical models; and moreover (3) they create opportunities in developing novel analytical models.

SPICE modeling for FPGA architectures requires detailed transistor-level modeling for all the circuit elements within
the considered FPGA architecture. However, current VPR architectural description language [LAR11] does not offer
enough transistor-level parameters to model the most common circuit modules, such as multiplexers and LUTs. There-
fore, we are developing an extension on the VPR architectural description language to model the transistor-level circuit
designs.

The technical details can be found in our papers [TGM15] [TGMG19].

4 Chapter 1. Why OpenFPGA?

CHAPTER

TWO

TECHNICAL HIGHLIGHTS

The following lists of technical features were created to help users find their needs for customizing FPGA fabrics.(as
of February 2021)

5

OpenFPGA Documentation, Release 1.2.2022

6 Chapter 2. Technical Highlights

OpenFPGA Documentation, Release 1.2.2022

2.1 Supported Circuit Designs

Circuit Types Auto-
generation

User-
Defined

Design Topologies

Inverter Yes Yes
• Power-gated In-

verter 1x example
• Inverter 1x Example
• Tapered inverter

16x example

Buffer Yes Yes
• Buffer 2x example
• Power-gated Buffer

4x example
• Tapered buffer 64x

example

AND gate Yes Yes
• 2-input AND Gate

OR gate Yes Yes
• 2-input OR Gate

MUX2 gate Yes Yes
• MUX2 Gate

Pass gate Yes Yes
• Transmission-gate

Example
• Pass-transistor Ex-

ample

Look-Up Table Yes Yes
• Any size
• Single-Output LUT
• Standard Frac-

turable LUT
• LUT with Harden

Logic

Routing
Multiplexer

Yes No
• Any size
• Multi-level Multi-

plexer
• One-level Multi-

plexer
• Tree-like Multi-

plexer
• Standard Cell Mul-

tiplexer
• Multiplexer with

Local Encoder
• Multiplexer with

Constant Input

Configurable
Memory

No Yes
• Configurable Latch
• SRAM with BL/WL
• Regular

Configuration-
chain Flip-flop

• Configuration-
chain Flip-flop with
Configure Enable
Signals

• Configuration-
chain Flip-flop with
Scan Input

Data Memory No Yes
• Any size
• D-type Flip-Flop
• Multi-mode Flip-

Flop
• Single-port Block

RAM
• Dual Port Block

RAM
• Multi-mode Dual

Port Block RAM

Arithmetic
Units

No Yes
• Any size
• Full Adder
• Multiplier
• Multi-mode Multi-

plier

I/O No Yes
• General Purpose

I/O
• Bi-directional

buffer
• AIB

2.1. Supported Circuit Designs 7

OpenFPGA Documentation, Release 1.2.2022

• The user defined netlist could come from a standard cell. See Build an FPGA fabric using Standard Cell Libraries
for details.

2.2 Supported FPGA Architectures

We support most FPGA architectures that VPR can support! The following are the most commonly seen architectural
features:

Block Type Architecture features
Programmable Block

• Single-mode Configurable Logic Block (CLB)
• Multi-mode Configurable Logic Block (CLB)
• Single-mode heterogeneous blocks
• Multi-mode heterogeneous blocks
• Flexible local routing architecture

Routing Block
• Tileable routing architecture
• Flexible connectivity
• Flexible Switch Block Patterns

Configuration Protocol
• Chain-based organization
• Frame-based organization
• Memory bank organization
• Flatten organization

2.3 Supported Verilog Modeling

OpenFPGA supports the following Verilog features in auto-generated netlists for circuit designs

• Synthesizable Behavioral Verilog

• Structural Verilog

• Implicit/Explicit port mapping

8 Chapter 2. Technical Highlights

CHAPTER

THREE

GETTING STARTED

3.1 How to Compile

Note: We recommend you to watch a tutorial video about how-to-compile before getting started

3.1.1 Supported Operating Systems

OpenFPGA is continously tested with Ubuntu 20.04 and partially on Ubuntu 22.04 It might work with earlier versions
and other distributions.

In addition to continous integration, our community users have tested OpenFPGA on their local machines using the
following operating systems:

• CentOS 7.8

• CentOS 8

• Ubuntu 18.04

• Ubuntu 21.04

• Ubuntu 22.04

3.1.2 Build Steps

OpenFPGA uses CMake to generate the Makefile scripts. In general, please follow the steps to compile

git clone https://github.com/LNIS-Projects/OpenFPGA.git
cd OpenFPGA
make all

Note: OpenFPGA requires gcc/g++ version > 7 and clang version > 6.

Note: cmake3.12+ is recommended to compile OpenFPGA with GUI

9

https://youtu.be/F9sMRmDewM0

OpenFPGA Documentation, Release 1.2.2022

Note: Recommend using make -j<int> to accelerate the compilation, where <int> denotes the number of cores to
be used in compilation.

Note: VPR’s GUI requires gtk-3, and can be enabled with make .. CMAKE_FLAGS="-DVPR_USE_EZGL=on"

Quick Compilation Verification

Note: Ensure that you install python dependences in Dependencies.

To quickly verify the tool is well compiled, users can run the following command from OpenFPGA root repository

python3 openfpga_flow/scripts/run_fpga_task.py compilation_verification --debug --show_
→˓thread_logs

3.1.3 Build Options

General build targets are available in the top-level makefile. Call help desk to see details

make help

The following options are available for a custom build

BUILD_TYPE=<string>

Specify the type of build. Can be either release or debug. By default, release mode is selected (full optimiza-
tion on runtime)

CMAKE_FLAGS=<string>

Force build flags to CMake. The following flags are available

• DOPENFPGA_WITH_TEST=[ON|OFF]: Enable/Disable the test build

• DOPENFPGA_WITH_YOSYS=[ON|OFF]: Enable/Disable the build of yosys. Note that when disabled, the
build of yosys-plugin is also disabled

• DOPENFPGA_WITH_YOSYS_PLUGIN=[ON|OFF]: Enable/Disable the build of yosys-plugin.

• DOPENFPGA_WITH_VERSION=[ON|OFF]: Enable/Disable the build of version number. When disabled, ver-
sion number will be displayed as an empty string.

• DOPENFPGA_WITH_SWIG=[ON|OFF]: Enable/Disable the build of SWIG, which is required for integrating
to high-level interface.

• OPENFPGA_ENABLE_STRICT_COMPILE=[ON|OFF]: Specifies whether compiler warnings should be
treated as errors (e.g. -Werror)

Warning: By default, only required modules in Verilog-to-Routing (VTR) is enabled. On other words, abc, odin,
yosys and other add-ons inside VTR are not built. If you want to enable them, please look into the dedicated
options of CMake scripts.

10 Chapter 3. Getting Started

OpenFPGA Documentation, Release 1.2.2022

CMAKE_GOALS=<string>

Specify the build target for CMake system. For example, cmake_goals=openfpga indicates that only openfpga
binary will be compiled. For a detailed list of targets, use make list_cmake_targets to show. By default, all
the build targets will be included.

3.1.4 Dependencies

Dependencies can be installed upon the use of OpenFPGA on different systems In general, OpenFPGA requires specific
versions for the following dependencies:

cmake
version >3.12 for graphical interface

iverilog
version 10.3+ is required to run Verilog-to-Verification flow

Ubuntu 20.04

• Dependencies required to build the code base

#!/usr/bin/env bash

The package list is designed for Ubuntu 20.04 LTS
add-apt-repository -y ppa:ubuntu-toolchain-r/test
apt-get update
apt-get install -y \

autoconf \
automake \
bison \
ccache \
cmake \
ctags \
curl \
doxygen \
flex \
fontconfig \
gdb \
git \
gperf \
iverilog \
libc6-dev \
libcairo2-dev \
libevent-dev \
libffi-dev \
libfontconfig1-dev \
liblist-moreutils-perl \
libncurses5-dev \
libreadline-dev \
libreadline8 \
libx11-dev \
libxft-dev \
libxml++2.6-dev \
make \

(continues on next page)

3.1. How to Compile 11

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

perl \
pkg-config \
python3 \
python3-setuptools \
python3-lxml \
python3-pip \
qt5-default \
tcllib \
tcl8.6-dev \
texinfo \
time \
valgrind \
wget \
zip \
swig \
expect \
g++-7 \
gcc-7 \
g++-8 \
gcc-8 \
g++-9 \
gcc-9 \
g++-10 \
gcc-10 \
g++-11 \
gcc-11 \
clang-6.0 \
clang-7 \
clang-8 \
clang-10 \
clang-format-10 \
libxml2-utils \
libssl-dev

• Dependencies required to run regression tests

Update as required by some packages
apt-get update
apt-get install --no-install-recommends -y \
libdatetime-perl libc6 libffi-dev libgcc1 libreadline8 libstdc++6 \
libtcl8.6 tcl python3.8 python3-pip zlib1g libbz2-1.0 \
iverilog git rsync make curl wget tree python3.8-venv

Note: Python packages are also required

python3 -m pip install -r requirements.txt

• Dependencies required to build documentation

#!/usr/bin/env bash

(continues on next page)

12 Chapter 3. Getting Started

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

The package list is designed for Ubuntu 20.04 LTS
apt-get install python3-sphinx
python3 -m pip install -r docs/requirements.txt

Ubuntu 22.04

• Dependencies required to build the code base

#!/usr/bin/env bash

The package list is designed for Ubuntu 20.04 LTS
add-apt-repository -y ppa:ubuntu-toolchain-r/test
apt-get update
apt-get install -y \

autoconf \
automake \
bison \
ccache \
cmake \
exuberant-ctags \
curl \
doxygen \
flex \
fontconfig \
gdb \
git \
gperf \
iverilog \
libc6-dev \
libcairo2-dev \
libevent-dev \
libffi-dev \
libfontconfig1-dev \
liblist-moreutils-perl \
libncurses5-dev \
libreadline-dev \
libreadline8 \
libx11-dev \
libxft-dev \
libxml++2.6-dev \
make \
perl \
pkg-config \
python3 \
python3-setuptools \
python3-lxml \
python3-pip \
qtbase5-dev \
tcllib \
tcl8.6-dev \
texinfo \

(continues on next page)

3.1. How to Compile 13

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

time \
valgrind \
wget \
zip \
swig \
expect \
g++-9 \
gcc-9 \
g++-10 \
gcc-10 \
g++-11 \
gcc-11 \
clang-12 \
clang-format-12 \
libxml2-utils

• Dependencies required to run regression tests

Update as required by some packages
apt-get update
apt-get install --no-install-recommends -y \
libdatetime-perl libc6 libffi-dev libgcc1 libreadline8 libstdc++6 \
libtcl8.6 tcl python3.8 python3-pip zlib1g libbz2-1.0 \
iverilog git rsync make curl wget tree python3.8-venv

Note: Python packages are also required

python3 -m pip install -r requirements.txt

• Dependencies required to build documentation

#!/usr/bin/env bash

The package list is designed for Ubuntu 20.04 LTS
apt-get install python3-sphinx
python3 -m pip install -r docs/requirements.txt

3.1.5 Running with pre-built docker image

Users can skip the traditional installation process by using the Dockerized version of the OpenFPGA tool. The OpenF-
PGA project maintains the docker image/Github package of the latest stable version of OpenFPGA in the following
repository openfpga-master. This image contains precompiled OpenFPGA binaries with all prerequisites installed.

To get the docker image from the repository,
docker pull ghcr.io/lnis-uofu/openfpga-master:latest

To invoke openfpga_shell
docker run -it ghcr.io/lnis-uofu/openfpga-master:latest openfpga/openfpga bash

(continues on next page)

14 Chapter 3. Getting Started

https://github.com/orgs/lnis-uofu/packages/container/package/openfpga-master

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

To run the task that already exists in the repository.
docker run -it ghcr.io/lnis-uofu/openfpga-master:latest bash -c "source openfpga.sh &&␣
→˓run-task compilation_verification"

To link the local directory wihth docker
mkdir work

docker run -it -v work:/opt/openfpga/ ghcr.io/lnis-uofu/openfpga-master:latest bash
Inside container
source openfpga.sh
cd work
create_task _my_task yosys_vpr

3.2 OpenFPGA Shell Commands

OpenFPGA provides bash/zsh shell-based shortcuts to perform all essential functions and navigate through the direc-
tories. Go to the OpenFPGA directory and source openfpga.sh,

export OPENFPGA_PATH=<path-to-openfpga-repository-root>
cd ${OPENFPGA_PATH} && source openfpga.sh

Note: The OpenFPGA shortcut works with only a bash-like shell. e.g., bash/zsh/fish, etc.

3.2.1 Commands

Once the openfpga.sh script is sourced, you can run any following commands directly in the terminal.

list-tasks

This command lists all the OpenFPGA tasks from the current task directory. default task directory is considered
as ${OPENFPGA_PATH}/openfpga_flow/tasks

run-task <task_name> **kwarags

This command runs the specified task. The script will first look for the task in the current working directory.
If it is not in the current directory, it will then search in TASK_DIRECTORY (relative to task directory). You
can also provide a path as a task_name, for example, run-task basic_tests/generate_fabric The valid
arguments listed here <_openfpga_task_args>`_, you can also run run-task run-task to get the list of command-
line arguments.

create-task <task_name> <template>

It creates a template task in the current directory with the given task_name. the template is an optional argu-
ment; there are two templates currently configured - vpr_blif: A template task for running flow with .blif
file as an input (VPR + Netlist generation) - yosys_vpr: A template task for running flow with .v file as an
input (Synthesis + VPR + Netlist generation) you can also use this command to copy any example project;
use a list-tasks command to get the list of example projects for example create-task _my_task_copy
basic_tests/generate_fabric create a copy of the basic_tests/generate_fabric task in the current
directory with _my_task_copy name.

3.2. OpenFPGA Shell Commands 15

OpenFPGA Documentation, Release 1.2.2022

goto_task <task_name> <run_num[default 0]>

This command navigate shell to specific run-directory of the given task. For example goto_task lab1 2 will
change directory to run002 runt directory of lab2

clear-task-run <task_name>

Clears all run directories of the given task

run-modelsim <task_name>

This command runs the verification using ModelSim. The test benches are generated during the OpenFPGA run.
Note: users need to have VSIM installed and configured

run-regression-local

This script runs the regression test locally using the current version of OpenFPGA. NOTE Important before
making a pull request to the master

unset-openfpga

Unregisters all the shortcuts and commands from the current shell session

3.3 Supported Tools

3.3.1 Internal Tools

To enable various design purposes, OpenFPGA integrates several tools to i.e., FPGA-Verilog, FPGA-SDC and FPGA-
bitstream (highlighted green in OpenFPGA tool suites and design flows, with other popular open-source EDA tools,
i.e., VPR and Yosys.

Fig. 3.1: OpenFPGA tool suites and design flows

3.3.2 Third-Party Tools

OpenFPGA accepts and outputs in standard file formats, and therefore can interface a wide range of commercial and
open-source tools.

Usage Tools Version Requirement
Back-
end

Synopsys IC Compiler II
Cadence Innovus

v2019.03 or later
v19.1 or later

Timing
Ana-
lyzer

Synopsys PrimeTime
Cadence Tempus

v2019.03 or later
v19.15 or later

Verifi-
cation

Synopsys VCS
Synopsys Formality
Mentor ModelSim
Mentor QuestaSim
Cadence NCSim
Icarus iVerilog

v2019.06 or later
v2019.03 or later
v10.6 or later
v2019.3 or later
v15.2 or later
v10.1 or later

• The version requirements is based on our local tests. Older versions may work.

16 Chapter 3. Getting Started

CHAPTER

FOUR

DESIGN FLOWS

4.1 Generate Fabric Netlists

Note: You may watch the video representation of this tutorial

This tutorial will show an example how to
• generate Verilog netlists for a FPGA fabric

Note: Before running any design flows, please checkout the tutorial How to Compile, to ensure that you have an
operating copy of OpenFPGA installed on your computer.

4.1.1 Prepare Task Configuration File

OpenFPGA provides push-button scripts for users to run design flows (see details in OpenFPGA Task). Users can
customize their flow-run by crafting a task configuration file.

Here, we consider an existing test case generate_fabric. In the task configuration file, you can specify the XML-
based architecture files in LINE 21 and LINE 25 that describe the architecture of the FPGA fabric. In this example,
we are using a low-cost FPGA architecture similar to the lattice ICE40 series

Also, in LINE 20, you can specify the openfpga shell script to be executed. Here, we are using an example script which
is golden reference to generate Verilog netlists

Note: You can use text editor to customize the configuration file. Here, we use it as is.

4.1.2 Run OpenFPGA Task

After finalizing your configuration file, you can run the task by calling the python script with the given path to task
configuration file.

python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/generate_fabric

When the flow run is executed, you can visit the runtime directory and check the Verilog netlists.

Note that your task-run outcomes are stored in the directory called latest in the same level of your task configuration
file.

17

https://youtu.be/aJ0OkZ1uh68
https://github.com/lnis-uofu/OpenFPGA/blob/master/openfpga_flow/tasks/basic_tests/generate_fabric/config/task.conf

OpenFPGA Documentation, Release 1.2.2022

The Verilog netlists are generated in the following directory

${OPENFPGA_PATH}/openfpga_flow/tasks/basic_tests/generate_fabric/latest/k6_frac_N10_
→˓tileable_40nm/and2/MIN_ROUTE_CHAN_WIDTH/SRC

Note: ${OPENFPGA_PATH} is the root directory of OpenFPGA

Note: See Fabric Netlists for the netlist details.

In the Verilog files, you can validate if the Verilog description is consistent as your definition in the architecture file.
The Verilog files can be then used to drive different tools, such as layout generation etc.

4.1.3 Run icarus iVerilog Compilation

Go to the directory

cd ${OPENFPGA_PATH}/openfpga_flow/tasks/basic_tests/generate_fabric/latest/k6_frac_N10_
→˓tileable_40nm/and2/MIN_ROUTE_CHAN_WIDTH

Compile with iVerilog command:

iverilog SRC/fabric_netlists.v

Note: Please ensure that iVerilog is installed correctly on your computer

If compilation is successful, you can see a file a.out in the directory.

4.2 From Verilog to Verification

This tutorial will show an example how to
• generate Verilog netlists for a FPGA fabric

• generate Verilog testbenches for a RTL design

• run HDL simulation to verify the functional correctness of the implemented FPGA fabric

Note: Before running any design flows, please checkout the tutorial How to Compile, to ensure that you have an
operating copy of OpenFPGA installed on your computer.

18 Chapter 4. Design Flows

OpenFPGA Documentation, Release 1.2.2022

4.2.1 Netlist Generation

We will use the openfpga_flow scripts (see details in OpenFPGA Task) to generate the Verilog netlists and testbenches.
Here, we consider a representative but fairly simple FPGA architecture, which is based on 4-input LUTs. We will map
a 2-input AND gate to the FPGA fabric, and run a full testbench (see details in Testbench)

We will simply execute the following openfpga task-run by

python3 openfpga_flow/scripts/run_fpga_task.py basic_tests/full_testbench/configuration_
→˓chain

Detailed settings, such as architecture XML files and RTL designs, can be found at ${OPENFPGA_PATH}/
openfpga_flow/tasks/basic_tests/full_testbench/configuration_chain/config/task.conf.

Note: ${OPENFPGA_PATH} is the root directory of OpenFPGA

After this task-run, you can find all the generated netlists and testbenches at

${OPENFPGA_PATH}/openfpga_flow/tasks/basic_tests/full_testbench/configuration_chain/
→˓latest/k4_N4_tileable_40nm/and2/MIN_ROUTE_CHAN_WIDTH/SRC/

Note: See Fabric Netlists and Testbench for the netlist details.

4.2.2 Run icarus iVerilog Simulation

Through OpenFPGA Scripts

By default, the configuration_chain task-run will execute iVerilog simulation automatically. The simulation results
are logged in

${OPENFPGA_PATH}/openfpga_flow/tasks/basic_tests/full_testbench/configuration_chain/
→˓latest/k4_N4_tileable_40nm/and2/MIN_ROUTE_CHAN_WIDTH/vvp_sim_output.txt

If the verification passed, you should be able to see Simulation Succeed in the log file.

All the waveforms are stored in the and2_formal.vcd file. To visualize the waveforms, you can use the GTKWave.

gtkwave ${OPENFPGA_PATH}/openfpga_flow/tasks/basic_tests/full_testbench/configuration_
→˓chain/latest/k4_N4_tileable_40nm/and2/MIN_ROUTE_CHAN_WIDTH/and2_formal.vcd &

Manual Method

If you want to run iVerilog simulation manually, you can follow these steps:

cd ${OPENFPGA_PATH}/openfpga_flow/tasks/basic_tests/full_testbench/configuration_chain/
→˓latest/k4_N4_tileable_40nm/and2/MIN_ROUTE_CHAN_WIDTH

source iverilog_output.txt

vvp compiled_and2

4.2. From Verilog to Verification 19

http://gtkwave.sourceforge.net/

OpenFPGA Documentation, Release 1.2.2022

Debugging Tips

If you want to apply full visibility to the signals, you need to change the following line in

${OPENFPGA_PATH}/openfpga_flow/tasks/basic_tests/full_testbench/configuration_chain/
→˓latest/k4_N4_tileable_40nm/and2/MIN_ROUTE_CHAN_WIDTH/SRC/and2_autocheck_top_tb.v

from

$dumpvars (1, and2_autocheck_top_tb);

to

$dumpvars (12, and2_autocheck_top_tb);

4.2.3 Run Modelsim Simulation

Alternatively, you can run Modelsim simulations through openfpga_flow scripts or manually.

Note: Before starting, please ensure that Mentor Modelsim has been correctly installed on your local environment.

Through OpenFPGA Scripts

You can simply call the python script in the following line:

python3 openfpga_flow/scripts/run_modelsim.py basic_tests/full_testbench/configuration_
→˓chain --run_sim

The script will automatically create a Modelsim project at

${OPENFPGA_PATH}/openfpga_flow/tasks/basic_tests/full_testbench/configuration_chain/
→˓latest/k4_N4_tileable_40nm/and2/MIN_ROUTE_CHAN_WIDTH/MSIM2/

and run the simulation.

You may open the project and visualize the simulation results.

Manual Method

Modify the fpga_defines.v (see details in Fabric Netlists) at

${OPENFPGA_PATH}/openfpga_flow/tasks/openfpga_shellfull_testbench//configuration_chain/
→˓latest/k4_N4_tileable_40nm/and2/MIN_ROUTE_CHAN_WIDTH/SRC/

by deleting the line

`define ICARUS_SIMULATOR 1

Create a folder MSIM under

${OPENFPGA_PATH}/openfpga_flow/tasks/basic_tests/full_testbench/configuration_chain/
→˓latest/k4_N4_tileable_40nm/and2/MIN_ROUTE_CHAN_WIDTH/

20 Chapter 4. Design Flows

OpenFPGA Documentation, Release 1.2.2022

Under the MSIM folder, create symbolic links to SRC folder and reference benchmarks by

ln -s ../SRC ./

ln -s ../and2_output_verilog.v ./

Note: Depending on the operating system, you may use other ways to create the symbolic links

Launch ModelSim under the MSIM folder and create a project by following Modelsim user manuals.

Add the following file to your project:

${OPENFPGA_PATH}/openfpga_flow/tasks/basic_tests/full_testbench/configuration_chain/
→˓latest/k4_N4_tileable_40nm/and2/MIN_ROUTE_CHAN_WIDTH/SRC/and2_include_netlists.v

Compile the netlists, create a simulation configuration and specify and2_autocheck_top_tb at the top unit.

Execute simulation with run -all You should see Simulation Succeed in the output log.

4.3 From Verilog to GDSII

The generated Verilog code can be used through a semi-custom design flow to generate the layout.

Because of the commercial nature of the semi-custom design tools we are using, we cannot share the different scripts
that we are using. However, we can show the results to serve as a proof-of-concept and encourage research through it.

Layout_Diagram shows the different steps involved in realizing the layout for any design. CTS stands for Clock Tree
Synthesis, and PPA stands for Power-Performance-Area. First, we create the floorplan with the different tiles involved
in the FPGA, i.e., the CLBs and place them. Then the clock tree is generated. Finally, the design is routed, and the
PPA signoff is realized. Coupled with FPGA-SPICE, we get silicon level analysis on the design.

In Layout_Floorplan, we show the result we get from the floorplanning we get through Cadence Innovus.

4.3. From Verilog to GDSII 21

OpenFPGA Documentation, Release 1.2.2022

22 Chapter 4. Design Flows

CHAPTER

FIVE

ARCHITECTURE MODELING

5.1 A Quick Start

In this tutorial, we will consider a simple but representative FPGA architecture to show you how to
• Adapt a VPR architecture XML file to OpenFPGA acceptable format

• Create an OpenFPGA architecture XML file to customize the primitive circuits

• Create a simulation setting XML file to specify the simulation settings

Through this quick example, we will introduce the key steps to build your own FPGA based on a VPR architecture
template.

Note: These tips are generic and fundamental to build any architecture file for OpenFPGA.

5.1.1 Adapt VPR Architecture

We start with the VPR architecture template. This file models a homogeneous FPGA, as illustrated in Fig. 5.1.

A summary of the architectural features is as follows:
• An array of tiles surrounded by a ring of I/O blocks

• K4N4 Configurable Logic Block (CLB), which consists of four Basic Logic Elements (BLEs) and a fully-
connected crossbar. Each BLE contains a 4-input Look-Up Table (LUT), a Flip-Flop (FF) and a 2:1 routing
multiplexer

• Length-1 routing wires interconnected by Wilton-Style Switch Block (SB)

The VPR architecture description is designed for EDA needs mainly, which lacks the details physical modeling required
by OpenFPGA. Here, we show a step-by-step adaption on the architecture template.

23

https://github.com/verilog-to-routing/vtr-verilog-to-routing/blob/master/vtr_flow/arch/timing/k4_N4_90nm.xml

OpenFPGA Documentation, Release 1.2.2022

Fig. 5.1: K4N4 FPGA architecture

24 Chapter 5. Architecture Modeling

OpenFPGA Documentation, Release 1.2.2022

Physical I/O Modeling

OpenFPGA requires a physical I/O block rather the abstract I/O modeling of VPR. The <pb_type name="io"> under
the <complexblocklist> should be adapted to the following:

<!-- Define I/O pads begin -->
<pb_type name="io">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>

<!-- A mode denotes the physical implementation of an I/O
This mode will not be used by packer but is mainly used for fabric verilog␣

→˓generation
-->

<mode name="physical" packable="false">
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>

</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="iopad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>

</direct>
<direct name="inpad" input="iopad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>

</direct>
</interconnect>

</mode>

<!-- Operating modes of I/O used by VPR
IOs can operate as either inputs or outputs. -->

<mode name="inpad">
<pb_type name="inpad" blif_model=".input" num_pb="1">
<output name="inpad" num_pins="1"/>

</pb_type>
<interconnect>
<direct name="inpad" input="inpad.inpad" output="io.inpad">
<delay_constant max="9.492000e-11" in_port="inpad.inpad" out_port="io.inpad"/>

</direct>
</interconnect>

</mode>
<mode name="outpad">
<pb_type name="outpad" blif_model=".output" num_pb="1">
<input name="outpad" num_pins="1"/>

</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="outpad.outpad">
<delay_constant max="2.675000e-11" in_port="io.outpad" out_port="outpad.outpad"/

→˓>
</direct>

</interconnect>
</mode>

</pb_type>

5.1. A Quick Start 25

OpenFPGA Documentation, Release 1.2.2022

Note that, there are several major changes in the above codes, when compared to the original code.
• We added a physical mode of I/O in addition to the original VPR I/O modeling, which is close to the physical

implementation of an I/O cell. OpenFPGA will output fabric netlists base on the physical implementation
rather than the operating modes.

• We remove the clock port of I/O is actually a dangling port.

• We specify that the phyical mode to be disabled for VPR packer by using packable=false. This can help
reduce packer’s runtime.

Since, we have added a new BLIF model subckt io to the architecture modeling, we should update the <models>
XML node by adding a new I/O model.

<models>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="io">
<input_ports>
<port name="outpad"/>

</input_ports>
<output_ports>
<port name="inpad"/>

</output_ports>
</model>

</models>

Tileable Architecture

OpenFPGA does support fine-grained tile-based architecture as shown in Fig. 5.1. The tileable architecture leads to fast
netlist generation as well as enables highly optimized physical designs through backend flow. To turn on the tileable
architecture, the tileable property should be added to <layout> node.

<layout tileable="true">

By enabling this, all the Switch Blocks and Connection Blocks will be generated as identical as possible. As a result,
for any FPGA array size, there are only 9 unique tiles to be generated in netlists. See details in [TGAG19].

Detailed guidelines can be found at Additional Syntax to Original VPR XML.

5.1.2 Craft OpenFPGA Architecture

OpenFPGA needs another XML file which contains detailed modeling on the physical design of FPGA architecture.
This is designed to minimize the modification on the original VPR architecture file, so that it can be reused. You may
create an XML file k4_n4_openfpga_arch.xml and then add contents shown as follows.

26 Chapter 5. Architecture Modeling

OpenFPGA Documentation, Release 1.2.2022

Overview on the Structure

An OpenFPGA architecture including the following parts.
• Architecture modeling with a focus on circuit-level description

• Configuration protocol definition

• Annotation on the VPR architecture modules

These parts are organized as follows in the XML file.

<openfpga_architecture>
<!-- Technology-related (device/transistor-level) information
<technology_library>
...

</technology_library>

<!-- Circuit-level description -->
<circuit_library>
...

</circuit_library>

<!-- Configuration protocol definition -->
<configuration_protocol>
...

</configuration_protocol>

<!-- Annotation on VPR architecture modules -->
<connection_block>
...

</connection_block>
<switch_block>
...

</switch_block>
<routing_segment>
...

</routing_segment>
<pb_type_annotations>
...

</pb_type_annotations>
</openfpga_architecture>

Technology Library Definition

Technology information are all stored under the <technology_library> node, which contains transistor-level in-
formation to build the FPGA. Here, we bind to the open-source ASU Predictive Technology Modeling (PTM) 45nm
process library. See details in Technology library.

<technology_library>
<device_library>
<device_model name="logic" type="transistor">
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/

→˓tech/PTM_45nm/45nm.pm"/>
(continues on next page)

5.1. A Quick Start 27

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

<design vdd="0.9" pn_ratio="2"/>
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_

→˓transistor_var"/>
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_

→˓transistor_var"/>
</device_model>
<device_model name="io" type="transistor">
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/

→˓45nm.pm"/>
<design vdd="2.5" pn_ratio="3"/>
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_

→˓transistor_var"/>
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_

→˓transistor_var"/>
</device_model>

</device_library>
<variation_library>
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>

</variation_library>
</technology_library>

Note: These information are important for FPGA-SPICE to correctly generate netlists. If you are not using FPGA-
SPICE, you may provide a dummy technology library.

Circuit Library Definition

Circuit library is the crucial component of the architecture description, which contains a list of <circuit_model>,
each of which describes how a circuit is implemented for a FPGA component.

Typically, we will defined a few atom <circuit_model> which are used to build primitive <circuit_model>.

<circuit_library>
<!-- Atom circuit models begin-->
<circuit_model>
...

</circuit_model>
<!-- Atom circuit models end-->

<!-- Primitive circuit models begin -->
<circuit_model>
...

</circuit_model>
<!-- Primitive circuit models end -->

</circuit_library>

Note: Primitive <circuit_model> are the circuits which are directly used to build a FPGA component, such as Look-
Up Table (LUT). Atom <circuit_model> are the circuits which are only used inside primitive <circuit_model>.

28 Chapter 5. Architecture Modeling

OpenFPGA Documentation, Release 1.2.2022

In this tutorial, we need the following atom <circuit_model>, which are inverters, buffers and pass-gate logics.

<!-- Atom circuit models begin-->
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="true">
<design_technology type="cmos" topology="inverter" size="1"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12

</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12

</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4

→˓"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12

</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12

</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="false">
<design_technology type="cmos" topology="buffer" size="1" num_level="3" f_per_stage="4

→˓"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12

</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12

</delay_matrix>
</circuit_model>
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="true">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2

→˓"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="input" prefix="sel" size="1"/>
<port type="input" prefix="selb" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12

</delay_matrix>
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
10e-12 5e-12 5e-12

</delay_matrix>
(continues on next page)

5.1. A Quick Start 29

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

</circuit_model>
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/> <!-- model_type could␣

→˓be T, res_val and cap_val DON'T CARE -->
</circuit_model>
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pi" R="0" C="0" num_level="1"/> <!-- model_type could be T,␣

→˓res_val cap_val should be defined -->
</circuit_model>
<!-- Atom circuit models end-->

In this tutorial, we require the following primitive <circuit_model>, which are routing multiplexers, Look-Up Tables,
I/O cells in FPGA architecture (see Fig. 5.1).

Note: We use different routing multiplexer circuits to maximum the performance by considering it fan-in and fan-out
in the architecture context.

Note: We specify that external Verilog netlists will be used for the circuits of Flip-Flops (FFs) static_dff and
sc_dff_compact, as well as the circuit of I/O cell iopad. Other circuit models will be auto-generated by OpenFPGA.

<!-- Primitive circuit models begin -->
<circuit_model type="mux" name="mux_2level" prefix="mux_2level" dump_structural_verilog=
→˓"true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input=

→˓"true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>

</circuit_model>
<circuit_model type="mux" name="mux_2level_tapbuf" prefix="mux_2level_tapbuf" dump_
→˓structural_verilog="true">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input=

→˓"true" const_input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>

(continues on next page)

30 Chapter 5. Architecture Modeling

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>

</circuit_model>
<circuit_model type="mux" name="mux_1level_tapbuf" prefix="mux_1level_tapbuf" is_default=
→˓"true" dump_structural_verilog="true">
<design_technology type="cmos" structure="one_level" add_const_input="true" const_

→˓input_val="1"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="tap_buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>

</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="${OPENFPGA_PATH}/
→˓openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/
→˓VerilogNetlists/ff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="set" size="1" is_global="true" default_val="0" is_set="true

→˓"/>
<port type="input" prefix="reset" size="1" is_global="true" default_val="0" is_reset=

→˓"true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />

</circuit_model>
<circuit_model type="lut" name="lut4" prefix="lut4" dump_structural_verilog="true">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="4"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="16"/>

</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> --
→˓>
<circuit_model type="ccff" name="sc_dff_compact" prefix="scff" spice_netlist="${OPENFPGA_
→˓PATH}/openfpga_flow/SpiceNetlists/ff.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_
→˓flow/VerilogNetlists/ff.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="input" prefix="pReset" lib_name="reset" size="1" is_global="true" default_

→˓val="0" is_reset="true" is_prog="true"/>
<port type="input" prefix="D" size="1"/>

(continues on next page)

5.1. A Quick Start 31

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="Qb" size="1"/>
<port type="clock" prefix="prog_clk" lib_name="clk" size="1" is_global="true" default_

→˓val="0" is_prog="true"/>
</circuit_model>
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="${OPENFPGA_PATH}/
→˓openfpga_flow/SpiceNetlists/io.sp" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/
→˓VerilogNetlists/io.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="sc_dff_

→˓compact" default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="output" prefix="inpad" size="1"/>

</circuit_model>
<!-- Primitive circuit models end -->

See details in Circuit Library and Circuit model examples.

Annotation on VPR Architecture

In this part, we bind the <circuit_model> defined in the circuit library to each FPGA component.

We specify that the FPGA fabric will be configured through a chain of Flip-Flops (FFs), which is built with the
<circuit_model name=sc_dff_compact>.

<configuration_protocol>
<organization type="scan_chain" circuit_model_name="sc_dff_compact"/>

</configuration_protocol>

For the routing architecture, we specify the circuit_model to be used as routing multiplexers inside Connection
Blocks (CBs), Switch Blocks (SBs), and also the routing wires.

<connection_block>
<switch name="ipin_cblock" circuit_model_name="mux_2level_tapbuf"/>

</connection_block>
<switch_block>
<switch name="0" circuit_model_name="mux_2level_tapbuf"/>

</switch_block>
<routing_segment>
<segment name="L4" circuit_model_name="chan_segment"/>

</routing_segment>

Note: For a correct binding, the name of connection block, switch block and routing segment should match the name
definition in your VPR architecture description!

For each <pb_type> defined in the <complexblocklist> of VPR architecture, we need to specify

• The physical mode for any <pb_type> that contains multiple <mode>. The name of the physical mode should
match a mode name that is defined in the VPR architecture. For example:

32 Chapter 5. Architecture Modeling

OpenFPGA Documentation, Release 1.2.2022

<pb_type name="io" physical_mode_name="physical"/>

• The circuit model used to implement any primitive <pb_type> in physical modes. It is required to provide full
hierarchy of the pb_type. For example:

<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>

Note: Mode-selection bits should be provided as the default configuration for a configurable resource. In this example,
an I/O cell has a configuration bit, as defined in the <circuit_model name="iopad">. We specify that by default,
the configuration memory will be set to logic 1.

• The physical <pb_type> for any <pb_type> in the operating modes (mode other than the physical mode).
This is required to translate mapping results from operating modes to their physical modes, in order to generate
bitstreams. It is required to provide full hierarchy of the pb_type. For example,

<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1"/
→˓>

Note: Mode-selection bits should be provided so as to configure the circuits to be functional as required by the
operating mode. In this example, an I/O cell will be configured with a logic 1 when operating as an input pad.

• The circuit model used to implement interconnecting modules. The interconnect name should match the defini-
tion in the VPR architecture file. For example,

<interconnect name="crossbar" circuit_model_name="mux_2level"/>

Note: If not specified, each interconnect will be binded to its default circuit_model. For example, the crossbar will
be binded to the default multiplexer <circuit_model name="mux_1level_tapbuf">, if not specified here.

Note: OpenFPGA automatically infers the type of circuit model required by each interconnect.

The complete annotation is shown as follows:

<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical"/>
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1

→˓"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits=

→˓"0"/>
<!-- End physical pb_type binding in complex block IO -->

<!-- physical pb_type binding in complex block CLB -->
<!-- physical mode will be the default mode if not specified -->
<pb_type name="clb">
<!-- Binding interconnect to circuit models as their physical implementation, if not␣

(continues on next page)

5.1. A Quick Start 33

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

→˓defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_2level"/>

</pb_type>
<pb_type name="clb.fle[n1_lut4].ble4.lut4" circuit_model_name="lut4"/>
<pb_type name="clb.fle[n1_lut4].ble4.ff" circuit_model_name="static_dff"/>
<!-- End physical pb_type binding in complex block IO -->

</pb_type_annotations>

See details in Bind circuit modules to VPR architecture.

5.1.3 Simulation Settings

OpenFPGA needs an XML file where detailed simulation settings are defined. The simulation settings contain critical
parameters to build testbenches for verify the FPGA fabric.

You may create an XML file k4_n4_openfpga_simulation.xml and then add contents shown as follows.

The complete annotation is shown as follows:

<openfpga_simulation_setting>
<clock_setting>
<operating frequency="auto" num_cycles="auto" slack="0.2"/>
<programming frequency="100e6"/>

</clock_setting>
<simulator_option>
<operating_condition temperature="25"/>
<output_log verbose="false" captab="false"/>
<accuracy type="abs" value="1e-13"/>
<runtime fast_simulation="true"/>

</simulator_option>
<monte_carlo num_simulation_points="2"/>
<measurement_setting>
<slew>
<rise upper_thres_pct="0.95" lower_thres_pct="0.05"/>
<fall upper_thres_pct="0.05" lower_thres_pct="0.95"/>

</slew>
<delay>
<rise input_thres_pct="0.5" output_thres_pct="0.5"/>
<fall input_thres_pct="0.5" output_thres_pct="0.5"/>

</delay>
</measurement_setting>
<stimulus>
<clock>
<rise slew_type="abs" slew_time="20e-12" />
<fall slew_type="abs" slew_time="20e-12" />

</clock>
<input>
<rise slew_type="abs" slew_time="25e-12" />
<fall slew_type="abs" slew_time="25e-12" />

</input>
</stimulus>

</openfpga_simulation_setting>

34 Chapter 5. Architecture Modeling

OpenFPGA Documentation, Release 1.2.2022

The <clock_setting> is crucial to create clock signals in testbenches.

Note: FPGA has two types of clocks, one is the operating clock which controls applications that mapped to FPGA
fabric, while the other is the programming clock which controls the configuration protocol.

In this example, we specify

• the operating clock will follow the maximum frequency achieved by VPR routing results

• the number of operating clock cycles to be used will follow the average signal activities of the RTL design that
is mapped to the FPGA fabric.

• the actual operating clock frequency will be relaxed (reduced) by 20% by considering the errors between VPR
results and physical designs.

• the programming clock frequency is fixed at 200MHz

The <simulator_option> are the options for SPICE simulator. Here we specify

• SPICE simulations will consider a 25 ∘𝐶 temperature.

• SPICE simulation will output results in a compact way without details on node capacitances.

• SPICE simulation will use 0.1ps as the minimum time step.

• SPICE simulation will consider fast algorithms to speed up runtime.

The <monte_carlo num_simulation_points="2"/> are the options for SPICE simulator. Here we specify that for
each testbench, we will consider two Monte-Carlo simulations to evaluate the impact of process variations.

The <measurement_setting> specify how the output signals will be measured for delay and power evaluation. Here
we specify that

• for slew calculation (used in power estimation), we consider from the 5% of the VDD to the 95% of the VDD for
both rising and falling edges.

• for delay calculation, we consider from the 50% of the VDD of input signal to the 50% of the VDD of output signals
for both rising and falling edges.

In the <stimulus>, we specify that 20ps slew time will be applied to built clock waverforms in SPICE simulations.

See details in Simulation settings.

5.2 Integrating Custom Verilog Modules with
user_defined_template.v

5.2.1 Introduction and Setup

In this tutorial, we will
• Provide the motivation for generating the user_defined_template.v verilog file

• Go through a generated user_defined_template.v file to demonstrate how to use it

Through this tutorial, we will show how and when to use the user_defined_template.v file.

To begin the tutorial, we start with a modified version of the hard adder task that comes with OpenFPGA. To follow
along, go to the root directory of OpenFPGA and enter:

5.2. Integrating Custom Verilog Modules with user_defined_template.v 35

OpenFPGA Documentation, Release 1.2.2022

vi openfpga_flow/openfpga_arch/k6_frac_N10_adder_chain_40nm_openfpga.xml

Go to LINE187 and replace LINE187 with:

<circuit_model type="hard_logic" name="ADDF" prefix="ADDF" is_default="true" spice_
→˓netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/spice/adder.sp" ␣
→˓verilog_netlist="">

5.2.2 Motivation

From the OpenFPGA root directory, run the command:

python3 openfpga_flow/scripts_run_fpga_task.py fpga_verilog/adder/hard_adder --debug --
→˓show_thread_logs

Running this command should fail and produce the following errors:

ERROR - iverilog_verification run failed with returncode 21
ERROR - command iverilog -o compiled_and2 ./SRC/and2_include_netlists.v -s and2_top_
→˓formal_verification_random_tb
ERROR - -->>././SRC/lb/logical_tile_clb_mode_default__fle_mode_physical__fabric_mode_
→˓default__adder.v:50: error: Unknown module type: ADDF
ERROR - -->>././SRC/lb/logical_tile_clb_mode_default__fle_mode_physical__fabric_mode_
→˓default__adder.v:50: error: Unknown module type: ADDF
ERROR - -->>././SRC/lb/logical_tile_clb_mode_default__fle_mode_physical__fabric_mode_
→˓default__adder.v:50: error: Unknown module type: ADDF
ERROR - -->>././SRC/lb/logical_tile_clb_mode_default__fle_mode_physical__fabric_mode_
→˓default__adder.v:50: error: Unknown module type: ADDF
ERROR - -->>././SRC/lb/logical_tile_clb_mode_default__fle_mode_physical__fabric_mode_
→˓default__adder.v:50: error: Unknown module type: ADDF
ERROR - -->>././SRC/lb/logical_tile_clb_mode_default__fle_mode_physical__fabric_mode_
→˓default__adder.v:50: error: Unknown module type: ADDF
ERROR - -->>././SRC/lb/logical_tile_clb_mode_default__fle_mode_physical__fabric_mode_
→˓default__adder.v:50: error: Unknown module type: ADDF
ERROR - -->>././SRC/lb/logical_tile_clb_mode_default__fle_mode_physical__fabric_mode_
→˓default__adder.v:50: error: Unknown module type: ADDF
ERROR - -->>././SRC/lb/logical_tile_clb_mode_default__fle_mode_physical__fabric_mode_
→˓default__adder.v:50: error: Unknown module type: ADDF
ERROR - -->>././SRC/lb/logical_tile_clb_mode_default__fle_mode_physical__fabric_mode_
→˓default__adder.v:50: error: Unknown module type: ADDF
ERROR - -->>././SRC/lb/logical_tile_clb_mode_default__fle_mode_physical__fabric_mode_
→˓default__adder.v:50: error: Unknown module type: ADDF
ERROR - -->>././SRC/lb/logical_tile_clb_mode_default__fle_mode_physical__fabric_mode_
→˓default__adder.v:50: error: Unknown module type: ADDF
ERROR - -->>././SRC/lb/logical_tile_clb_mode_default__fle_mode_physical__fabric_mode_
→˓default__adder.v:50: error: Unknown module type: ADDF
ERROR - -->>././SRC/lb/logical_tile_clb_mode_default__fle_mode_physical__fabric_mode_
→˓default__adder.v:50: error: Unknown module type: ADDF
ERROR - -->>././SRC/lb/logical_tile_clb_mode_default__fle_mode_physical__fabric_mode_
→˓default__adder.v:50: error: Unknown module type: ADDF
ERROR - -->>././SRC/lb/logical_tile_clb_mode_default__fle_mode_physical__fabric_mode_
→˓default__adder.v:50: error: Unknown module type: ADDF

(continues on next page)

36 Chapter 5. Architecture Modeling

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

ERROR - -->>././SRC/lb/logical_tile_clb_mode_default__fle_mode_physical__fabric_mode_
→˓default__adder.v:50: error: Unknown module type: ADDF
ERROR - -->>././SRC/lb/logical_tile_clb_mode_default__fle_mode_physical__fabric_mode_
→˓default__adder.v:50: error: Unknown module type: ADDF
ERROR - -->>././SRC/lb/logical_tile_clb_mode_default__fle_mode_physical__fabric_mode_
→˓default__adder.v:50: error: Unknown module type: ADDF
ERROR - -->>././SRC/lb/logical_tile_clb_mode_default__fle_mode_physical__fabric_mode_
→˓default__adder.v:50: error: Unknown module type: ADDF
ERROR - -->>21 error(s) during elaboration.
ERROR - Current working directory : /research/ece/lnis/USERS/leaptrot/OpenFPGA/
→˓openfpga_flow/tasks/fpga_verilog/adder/hard_adder/run019/k6_frac_N10_tileable_adder_
→˓chain_40nm/and2/MIN_ROUTE_CHAN_WIDTH
ERROR - Failed to run iverilog_verification task
ERROR - Exiting

This error log can also be found by running the following command from the root directory:

cat openfpga_flow/tasks/fpga_verilog/adder/hard_adder/latest/00_and2_MIN_ROUTE_CHAN_
→˓WIDTH_out.log

This command failed during the verification step because the path to the module definition for ADDF is missing. In
our architecture file, user-defined verilog modules are those <circuit_model> with the key term verilog_netlist. The
user_defined_template.v file provides a module template for incorporating Hard IPs without external library into
the architecture.

5.2.3 Fixing the Error

This error can be resolved by replacing the LINE187 of k6_frac_N10_adder_chain_40nm_openfpga.xml with
the following:

<circuit_model type="hard_logic" name="ADDF" prefix="ADDF" is_default="true" spice_
→˓netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/spice/adder.sp" ␣
→˓verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/verilog/adder.v">

The above line provides a path to generate the user_defined_template.v file. Now we can return to the root directory
and run this command again:

python3 openfpga_flow/scripts_run_fpga_task.py fpga_verilog/adder/hard_adder --debug --
→˓show_thread_logs

The task should now complete without any errors.

5.2.4 Fixing the Error with user_defined_template.v

The user_defined_template.v file can be found starting from the root directory and entering:

vi openfpga_flow/tasks/fpga_verilog/adder/hard_adder/latest/k6_frac_N10_tileable_adder_
→˓chain_40nm/and2/MIN_ROUTE_CHAN_WIDTH/SRC/sub_module/user_defined_template.v

Note: The user_defined_template.v file contains user-defined verilog modules that are found in the openf-
pga_cell_library with ports declaration (compatible with other netlists that are auto-generated by OpenFPGA) but

5.2. Integrating Custom Verilog Modules with user_defined_template.v 37

OpenFPGA Documentation, Release 1.2.2022

without functionality. user_defined_template.v is used as a reference for engineers to check what is the port se-
quence required by top-level verilog netlists. user_defined_template.v can be included in simulation only if there
are modifications to the user_defined_template.v.

To implement our own ADDF module, we need to remove all other module definitions (they are already defined else-
where and will cause an error if left in). Replace the user_defined_template.v file with the following:

//---
// FPGA Synthesizable Verilog Netlist
// Description: Template for user-defined Verilog modules
// Author: Xifan TANG
// Organization: University of Utah
// Date: Fri Mar 19 10:05:32 2021
//---
//----- Time scale -----
`timescale 1ns / 1ps

// ----- Template Verilog module for ADDF -----
//----- Default net type -----
`default_nettype none

// ----- Verilog module for ADDF -----
module ADDF(A,

B,
CI,
SUM,
CO);

//----- INPUT PORTS -----
input [0:0] A;
//----- INPUT PORTS -----
input [0:0] B;
//----- INPUT PORTS -----
input [0:0] CI;
//----- OUTPUT PORTS -----
output [0:0] SUM;
//----- OUTPUT PORTS -----
output [0:0] CO;

//----- BEGIN wire-connection ports -----
//----- END wire-connection ports -----

//----- BEGIN Registered ports -----
//----- END Registered ports -----

// ----- Internal logic should start here -----
assign SUM = A ^ B ^ CI;
assign CO = (A & B) | (A & CI) | (B & CI);

// ----- Internal logic should end here -----
endmodule
// ----- END Verilog module for ADDF -----

38 Chapter 5. Architecture Modeling

OpenFPGA Documentation, Release 1.2.2022

We can now link this user_defined_template.v into k6_frac_N10_adder_chain_40nm_openfpga.xml.

Note: Be sure to select the run where you modified the user_defined_template.v!

From the OpenFPGA root directory, run:

vi openfpga_flow/openfpga_arch/k6_frac_N10_adder_chain_40nm_openfpga.xml

At LINE187 in verilog_netlist, put in:

${OPENFPGA_PATH}/openfpga_flow/tasks/fpga_verilog/adder/hard_adder/**YOUR_RUN_NUMBER**/
→˓k6_frac_N10_tileable_adder_chain_40nm/and2/MIN_ROUTE_CHAN_WIDTH/SRC/sub_module/user_
→˓defined_template.v

Finally, rerun this command from the OpenFPGA root directory to ensure it is working:

python3 openfpga_flow/scripts_run_fpga_task.py fpga_verilog/adder/hard_adder --debug --
→˓show_thread_logs

5.3 Build an FPGA fabric using Standard Cell Libraries

5.3.1 Introduction

In this tutorial, we will
• Showcase how to create an architecture description based on standard cells, using OpenFPGA’s circuit

modeling language

• Use Skywater’s Process Design Kit (PDK) cell library to create an OR Gate circuit model for OpenFPGA

• Verify that the standard cell library file was correctly bound into the selected architecture file by looking at
auto-generated OpenFPGA files and checking simulation waveforms in GTKWave

Through this example, we will show how to bind standard cell library files with OpenFPGA Architectures.

Note: We showcase the methodology by considering the open-source Skywater 130nm PDK so that users can easily
reproduce the results.

5.3.2 Create and Verify the OpenFPGA Circuit Model

Note: In this tutorial, we focus on binding a 2-input OR gate from a standard cell library to a circuit model in
OpenFPGA’s architecture description file. Note that the approach can be generalized to any circuit model.

For this tutorial, we start with an example where the HDL netlist of an 2-input OR gate that is auto-generated by
OpenFPGA. After updating the architecture file, the auto-generated HDL netlist created by OpenFPGA will directly
instantiate a standard cell from the open-source Skywater 130nm PDK library. To follow along, go to the root directory
of OpenFPGA and enter:

5.3. Build an FPGA fabric using Standard Cell Libraries 39

https://github.com/google/skywater-pdk

OpenFPGA Documentation, Release 1.2.2022

python3 openfpga_flow/scripts_run_fpga_task.py fpga_verilog/adder/hard_adder --debug --
→˓show_thread_logs

This will run a prebuilt task with OpenFPGA cell libraries. When the task is finished, there will be many auto-generated
files to look through. For this tutorial, we are interested in the luts.v and and2_formal.vcd files. The OR2 gate is
used as a control circuit in the lut6 circuit model, and the and2_formal.vcd file will have the resulting waveforms
from the simulation run by the task. To open the luts.v file, run the following command:

vi openfpga_flow/tasks/fpga_verilog/adder/hard_adder/latest/k6_frac_N10_tileable_adder_
→˓chain_40nm/and2/MIN_ROUTE_CHAN_WIDTH/SRC/sub_module/luts.v

Note: Users can find full details about netlist organization in our documentation: Fabric Netlists

The luts.v file represents a Look Up Table within the OpenFPGA architecture. The important lines of this file for the
tutorial are highlighted below. These lines show the instantiation of OpenFPGA’s OR2 cell library.

//---
// FPGA Synthesizable Verilog Netlist
// Description: Look-Up Tables
// Author: Xifan TANG
// Organization: University of Utah
// Date: Tue Mar 30 15:25:03 2021
//---
//----- Time scale -----
`timescale 1ns / 1ps

//----- Default net type -----
`default_nettype none

// ----- Verilog module for frac_lut6 -----
module frac_lut6(in,

sram,
sram_inv,
mode,
mode_inv,
lut4_out,
lut5_out,
lut6_out);

//----- INPUT PORTS -----
input [0:5] in;
//----- INPUT PORTS -----
input [0:63] sram;
//----- INPUT PORTS -----
input [0:63] sram_inv;
//----- INPUT PORTS -----
input [0:1] mode;
//----- INPUT PORTS -----
input [0:1] mode_inv;
//----- OUTPUT PORTS -----
output [0:3] lut4_out;
//----- OUTPUT PORTS -----
output [0:1] lut5_out;

(continues on next page)

40 Chapter 5. Architecture Modeling

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

//----- OUTPUT PORTS -----
output [0:0] lut6_out;

//----- BEGIN wire-connection ports -----
wire [0:5] in;
wire [0:3] lut4_out;
wire [0:1] lut5_out;
wire [0:0] lut6_out;
//----- END wire-connection ports -----

//----- BEGIN Registered ports -----
//----- END Registered ports -----

wire [0:0] INVTX1_0_out;
wire [0:0] INVTX1_1_out;
wire [0:0] INVTX1_2_out;
wire [0:0] INVTX1_3_out;
wire [0:0] INVTX1_4_out;
wire [0:0] INVTX1_5_out;
wire [0:0] OR2_0_out;
wire [0:0] OR2_1_out;
wire [0:0] buf4_0_out;
wire [0:0] buf4_1_out;
wire [0:0] buf4_2_out;
wire [0:0] buf4_3_out;
wire [0:0] buf4_4_out;
wire [0:0] buf4_5_out;

// ----- BEGIN Local short connections -----
// ----- END Local short connections -----
// ----- BEGIN Local output short connections -----
// ----- END Local output short connections -----

OR2 OR2_0_ (
.a(mode[0:0]),
.b(in[4]),
.out(OR2_0_out));

OR2 OR2_1_ (
.a(mode[1]),
.b(in[5]),
.out(OR2_1_out));

INVTX1 INVTX1_0_ (
.in(in[0:0]),
.out(INVTX1_0_out));

INVTX1 INVTX1_1_ (
.in(in[1]),
.out(INVTX1_1_out));

(continues on next page)

5.3. Build an FPGA fabric using Standard Cell Libraries 41

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

INVTX1 INVTX1_2_ (
.in(in[2]),
.out(INVTX1_2_out));

INVTX1 INVTX1_3_ (
.in(in[3]),
.out(INVTX1_3_out));

INVTX1 INVTX1_4_ (
.in(OR2_0_out),
.out(INVTX1_4_out));

INVTX1 INVTX1_5_ (
.in(OR2_1_out),
.out(INVTX1_5_out));

buf4 buf4_0_ (
.in(in[0:0]),
.out(buf4_0_out));

buf4 buf4_1_ (
.in(in[1]),
.out(buf4_1_out));

buf4 buf4_2_ (
.in(in[2]),
.out(buf4_2_out));

buf4 buf4_3_ (
.in(in[3]),
.out(buf4_3_out));

buf4 buf4_4_ (
.in(OR2_0_out),
.out(buf4_4_out));

buf4 buf4_5_ (
.in(OR2_1_out),
.out(buf4_5_out));

frac_lut6_mux frac_lut6_mux_0_ (
.in(sram[0:63]),
.sram({buf4_0_out, buf4_1_out, buf4_2_out, buf4_3_out, buf4_4_out, buf4_5_

→˓out}),
.sram_inv({INVTX1_0_out, INVTX1_1_out, INVTX1_2_out, INVTX1_3_out, INVTX1_

→˓4_out, INVTX1_5_out}),
.lut4_out(lut4_out[0:3]),
.lut5_out(lut5_out[0:1]),
.lut6_out(lut6_out));

endmodule
(continues on next page)

42 Chapter 5. Architecture Modeling

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

// ----- END Verilog module for frac_lut6 -----

//----- Default net type -----
`default_nettype none

We will also need to look at the control’s simulation waveforms. Viewing the waveforms is done through GTKWave
with the following command:

gtkwave openfpga_flow/tasks/fpga_verilog/adder/hard_adder/latest/k6_frac_N10_tileable_
→˓adder_chain_40nm/and2/MIN_ROUTE_CHAN_WIDTH/and2_formal.vcd &

The simulation waveforms should look similar to the following Fig. 5.2:

Fig. 5.2: Simulation Waveforms with OpenFPGA Circuit Model

Note: The waveform inputs do not need to exactly match because the testbench provides input in random intervals.

We have now finished creating the control and viewing the important sections for this tutorial. We can now incorporate
Skywater’s cell library to create a new circuit model.

5.3.3 Clone Skywater PDK into OpenFPGA

We will be using the open-source Skywater PDK to create our circuit model. We start by cloning the Skywater PDK
github repository into the OpenFPGA root directory. Run the following command in the root directory of OpenFPGA:

git clone https://github.com/google/skywater-pdk.git

Once the repository has been cloned, we need to build the cell libraries by running the following command in the
Skywater PDK root directory:

SUBMODULE_VERSION=latest make submodules -j3 || make submodules -j1

This will take some time to complete due to the size of the libraries. Once the libraries are made, creating the circuit
model can begin.

5.3. Build an FPGA fabric using Standard Cell Libraries 43

https://github.com/gtkwave/gtkwave

OpenFPGA Documentation, Release 1.2.2022

5.3.4 Create and Verify the Standard Cell Library Circuit Model

To create the circuit model, we will modify the k6_frac_N10_adder_chain_40nm_openfpga.xml OpenFPGA ar-
chitecture file by removing the circuit model for OpenFPGA’s OR2 gate, replacing the circuit model with one referenc-
ing the Skywater cell library, and modifying the LUT that references the old OR2 circuit model to reference our new
circuit model. We begin by running the following command in the root directory:

vi openfpga_flow/openfpga_arch/k6_frac_N10_adder_chain_40nm_openfpga.xml

We continue the circuit model creation process by replacing LINE67 to LINE81 with the following:

<circuit_model type="gate" name="sky130_fd_sc_ls__or2_1" prefix="sky130_fd_sc_ls__or2_1"␣
→˓verilog_netlist="${OPENFPGA_PATH}/skywater-pdk/libraries/sky130_fd_sc_ls/latest/cells/
→˓or2/sky130_fd_sc_ls__or2_1.v">
<design_technology type="cmos" topology="OR"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="A" size="1"/>
<port type="input" prefix="B" size="1"/>
<port type="output" prefix="X" size="1"/>

</circuit_model>

Note: The name of the circuit model must be consistent with the standard cell!

The most significant differences from the OpenFPGA Circuit Model in this section are:
• Change the name and prefix to match the module name from Skywater’s cell library

• Include a path to the verilog file using verilog_netlist.

The second change to k6_frac_N10_adder_chain_40nm_openfpga.xml is at LINE160, where we will be replacing
the line with the following:

<port type="input" prefix="in" size="6" tri_state_map="----11" circuit_model_name=
→˓"sky130_fd_sc_ls__or2_1"/>

This change replaces the input of the LUT with our new circuit model. Everything is in place to begin verification.

Verification begins by running the following command:

python3 openfpga_flow/scripts_run_fpga_task.py fpga_verilog/adder/hard_adder --debug --
→˓show_thread_logs

The task may output this error:

ERROR (00_and2_MIN_ROUTE_CHAN_WIDTH) - iverilog_verification run failed with returncode 1
ERROR (00_and2_MIN_ROUTE_CHAN_WIDTH) - command iverilog -o compiled_and2 ./SRC/and2_
→˓include_netlists.v -s and2_top_formal_verification_random_tb
ERROR (00_and2_MIN_ROUTE_CHAN_WIDTH) - -->>error: Unable to find the root module "and2_
→˓top_formal_verification_random_tb" in the Verilog source.
ERROR (00_and2_MIN_ROUTE_CHAN_WIDTH) - -->>1 error(s) during elaboration.
ERROR (00_and2_MIN_ROUTE_CHAN_WIDTH) - Current working directory : OpenFPGA/openfpga_
→˓flow/tasks/fpga_verilog/adder/hard_adder/run057/k6_frac_N10_tileable_adder_chain_40nm/
→˓and2/MIN_ROUTE_CHAN_WIDTH
ERROR (00_and2_MIN_ROUTE_CHAN_WIDTH) - Failed to run iverilog_verification task

(continues on next page)

44 Chapter 5. Architecture Modeling

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

ERROR (00_and2_MIN_ROUTE_CHAN_WIDTH) - Exiting
ERROR (00_and2_MIN_ROUTE_CHAN_WIDTH) - Failed to execute openfpga flow - 00_and2_MIN_
→˓ROUTE_CHAN_WIDTH

This error has occurred because IVerilog could not find the path to the Skywater PDK Cell Library we have selected.
To fix this, we need to go to the iverilog_output.txt file found here:

emacs openfpga_flow/tasks/fpga_verilog/adder/hard_adder/latest/k6_frac_N10_tileable_
→˓adder_chain_40nm/and2/MIN_ROUTE_CHAN_WIDTH/iverilog_output.txt

Replace all the text within iverilog_output.txt with the following:

iverilog -o compiled_and2 ./SRC/and2_include_netlists.v -s and2_top_formal_verification_
→˓random_tb -I ${OPENFPGA_PATH}/skywater-pdk/libraries/sky130_fd_sc_ls/latest/cells/or2

We can now manually rerun IVerilog, a tutorial on manually running IVerilog can be found at our From Verilog to
Verification tutorial. From the root directory, run the following commands:

cd openfpga_flow/tasks/fpga_verilog/adder/hard_adder/latest/k6_frac_N10_tileable_adder_
→˓chain_40nm/and2/MIN_ROUTE_CHAN_WIDTH/

source iverilog_output.txt

vvp compiled_and2

With IVerilog complete, we can verify that the cell library has been bound correctly by viewing the luts.v file and
the waveforms with GTKWave.

From the root directory, view the luts.v file with this command:

vi openfpga_flow/tasks/fpga_verilog/adder/hard_adder/latest/k6_frac_N10_tileable_adder_
→˓chain_40nm/and2/MIN_ROUTE_CHAN_WIDTH/SRC/sub_module/luts.v

Scrolling through luts.v, this should be present in the file:

//---
// FPGA Synthesizable Verilog Netlist
// Description: Look-Up Tables
// Author: Xifan TANG
// Organization: University of Utah
// Date: Tue Mar 30 20:25:06 2021
//---
//----- Time scale -----
`timescale 1ns / 1ps

//----- Default net type -----
`default_nettype none

// ----- Verilog module for frac_lut6 -----
module frac_lut6(in,

sram,
sram_inv,
mode,

(continues on next page)

5.3. Build an FPGA fabric using Standard Cell Libraries 45

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

mode_inv,
lut4_out,
lut5_out,
lut6_out);

//----- INPUT PORTS -----
input [0:5] in;
//----- INPUT PORTS -----
input [0:63] sram;
//----- INPUT PORTS -----
input [0:63] sram_inv;
//----- INPUT PORTS -----
input [0:1] mode;
//----- INPUT PORTS -----
input [0:1] mode_inv;
//----- OUTPUT PORTS -----
output [0:3] lut4_out;
//----- OUTPUT PORTS -----
output [0:1] lut5_out;
//----- OUTPUT PORTS -----
output [0:0] lut6_out;

//----- BEGIN wire-connection ports -----
wire [0:5] in;
wire [0:3] lut4_out;
wire [0:1] lut5_out;
wire [0:0] lut6_out;
//----- END wire-connection ports -----

//----- BEGIN Registered ports -----
//----- END Registered ports -----

wire [0:0] INVTX1_0_out;
wire [0:0] INVTX1_1_out;
wire [0:0] INVTX1_2_out;
wire [0:0] INVTX1_3_out;
wire [0:0] INVTX1_4_out;
wire [0:0] INVTX1_5_out;
wire [0:0] buf4_0_out;
wire [0:0] buf4_1_out;
wire [0:0] buf4_2_out;
wire [0:0] buf4_3_out;
wire [0:0] buf4_4_out;
wire [0:0] buf4_5_out;
wire [0:0] sky130_fd_sc_ls__or2_1_0_X;
wire [0:0] sky130_fd_sc_ls__or2_1_1_X;

// ----- BEGIN Local short connections -----
// ----- END Local short connections -----
// ----- BEGIN Local output short connections -----
// ----- END Local output short connections -----

(continues on next page)

46 Chapter 5. Architecture Modeling

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

sky130_fd_sc_ls__or2_1 sky130_fd_sc_ls__or2_1_0_ (
.A(mode[0:0]),
.B(in[4]),
.X(sky130_fd_sc_ls__or2_1_0_X));

sky130_fd_sc_ls__or2_1 sky130_fd_sc_ls__or2_1_1_ (
.A(mode[1]),
.B(in[5]),
.X(sky130_fd_sc_ls__or2_1_1_X));

INVTX1 INVTX1_0_ (
.in(in[0:0]),
.out(INVTX1_0_out));

INVTX1 INVTX1_1_ (
.in(in[1]),
.out(INVTX1_1_out));

INVTX1 INVTX1_2_ (
.in(in[2]),
.out(INVTX1_2_out));

INVTX1 INVTX1_3_ (
.in(in[3]),
.out(INVTX1_3_out));

INVTX1 INVTX1_4_ (
.in(sky130_fd_sc_ls__or2_1_0_X),
.out(INVTX1_4_out));

INVTX1 INVTX1_5_ (
.in(sky130_fd_sc_ls__or2_1_1_X),
.out(INVTX1_5_out));

buf4 buf4_0_ (
.in(in[0:0]),
.out(buf4_0_out));

buf4 buf4_1_ (
.in(in[1]),
.out(buf4_1_out));

buf4 buf4_2_ (
.in(in[2]),
.out(buf4_2_out));

buf4 buf4_3_ (
.in(in[3]),
.out(buf4_3_out));

buf4 buf4_4_ (

(continues on next page)

5.3. Build an FPGA fabric using Standard Cell Libraries 47

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

.in(sky130_fd_sc_ls__or2_1_0_X),

.out(buf4_4_out));

buf4 buf4_5_ (
.in(sky130_fd_sc_ls__or2_1_1_X),
.out(buf4_5_out));

frac_lut6_mux frac_lut6_mux_0_ (
.in(sram[0:63]),
.sram({buf4_0_out, buf4_1_out, buf4_2_out, buf4_3_out, buf4_4_out, buf4_5_

→˓out}),
.sram_inv({INVTX1_0_out, INVTX1_1_out, INVTX1_2_out, INVTX1_3_out, INVTX1_

→˓4_out, INVTX1_5_out}),
.lut4_out(lut4_out[0:3]),
.lut5_out(lut5_out[0:1]),
.lut6_out(lut6_out));

endmodule
// ----- END Verilog module for frac_lut6 -----

//----- Default net type -----
`default_nettype none

We can check the waveforms as well to see if they are similar with the command:

gtkwave openfpga_flow/tasks/fpga_verilog/adder/hard_adder/latest/k6_frac_N10_tileable_
→˓adder_chain_40nm/and2/MIN_ROUTE_CHAN_WIDTH/and2_formal.vcd &

The simulation waveforms should look similar to the following Fig. 5.3:

Fig. 5.3: Simulation Waveforms with Skywater PDK Circuit Model

We have now verified that the Skywater PDK Cell Library has been instantiated and bound to the OpenFPGA archi-
tecture file. If you have any problems, please Contact us.

5.4 Creating Spypads Using XML Syntax

5.4.1 Introduction

In this tutorial, we will
• Show the XML syntax for global outputs

• Showcase an example with spypads

• Modify an existing architecture to incorporate spypads

48 Chapter 5. Architecture Modeling

OpenFPGA Documentation, Release 1.2.2022

• Verify correctness through GTKWave

Through this tutorial, we will show how to create spypads in OpenFPGA.

Spypads are physical output pins on a FPGA chip through which you can read out internal signals when doing silicon-
level debugging. The XML syntax for spypads and other global signals can be found on our Circuit Library documen-
tation page.

To create a spypad, the port type needs to be set to output and is_global and is_io need to be set to true:

<port type="output" is_global="true" is_io="true"/>

When the port is syntactically correct, the outputs are independently wired from different instances to separated FPGA
outputs and would physically look like General-purpose outputs as separated FPGA I/Os

5.4.2 Pre-Built Spypads

An OpenFPGA architecture file that contains spypads and has a task that references it is the
k6_frac_N10_adder_register_scan_chain_depop50_spypad_40nm_openfpga.xml file. We can view
k6_frac_N10_adder_register_scan_chain_depop50_spypad_40nm_openfpga.xml by entering the fol-
lowing command at the root directory of OpenFPGA:

emacs openfpga_flow/openfpga_arch/k6_frac_N10_adder_register_scan_chain_depop50_spypad_
→˓40nm_openfpga.xml

In this architecture file, the output ports of a 6-input Look-Up Table (LUT) are defined as spypads using the XML syntax
is_global and is_io. As a result, all of the outputs from the 6-input LUT will be visible in the top-level module.
The output ports to the 6-input LUT are declared from LINE181 to LINE183 and belong to the frac_lut6_spypad
circuit_model that begins at LINE172.

<circuit_model type="lut" name="frac_lut6_spypad" prefix="frac_lut6_spypad" dump_
→˓structural_verilog="true">
<design_technology type="cmos" fracturable_lut="true"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>
<output_buffer exist="true" circuit_model_name="INVTX1"/>
<lut_input_inverter exist="true" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<lut_intermediate_buffer exist="true" circuit_model_name="buf4" location_map="-1-1-"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="6" tri_state_map="----11" circuit_model_name="OR2

→˓"/>
LINE181 <port type="output" prefix="lut4_out" size="4" lut_frac_level="4" lut_output_

→˓mask="0,1,2,3" is_global="true" is_io="true"/>
LINE182 <port type="output" prefix="lut5_out" size="2" lut_frac_level="5" lut_output_

→˓mask="0,1" is_global="true" is_io="true"/>
LINE183 <port type="output" prefix="lut6_out" size="1" lut_output_mask="0" is_global=

→˓"true" is_io="true"/>
<port type="sram" prefix="sram" size="64"/>
<port type="sram" prefix="mode" size="2" mode_select="true" circuit_model_name="DFFR"␣

→˓default_val="1"/>
</circuit_model>

The spypads are instantiated in the top-level verilog module fpga_top.v. fpga_top.v is automatically generated
when we run our task from the OpenFPGA root directory. However, we need to modify the task configuration file to
run the full testbench instead of the formal testbench to view the spypads’ waveforms in GTKWave.

5.4. Creating Spypads Using XML Syntax 49

https://github.com/lnis-uofu/OpenFPGA/blob/tutorials/openfpga_flow/openfpga_arch/k6_frac_N10_adder_register_scan_chain_depop50_spypad_40nm_openfpga.xml

OpenFPGA Documentation, Release 1.2.2022

Note: To read about the differences between the formal testbench and the full testbench, please visit our page on
testbenches: Testbench.

To open the task configuration file, run this command from the root directory of OpenFPGA:

emacs openfpga_flow/tasks/fpga_verilog/spypad/config/task.conf

The last line of the task configuration file (LINE44) sets the formal testbench to be the desired testbench. To use the
full testbench, comment out LINE44. The file will look like this when finished:

1 # =
2 # Configuration file for running experiments
3 # =
4 # timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
5 # Each job execute fpga_flow script on combination of architecture & benchmark
6 # timeout_each_job is timeout for each job
7 # =
8

9 [GENERAL]
10 run_engine=openfpga_shell
11 power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
12 power_analysis = true
13 spice_output=false
14 verilog_output=true
15 timeout_each_job = 20*60
16 fpga_flow=vpr_blif
17

18 [OpenFPGA_SHELL]
19 openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_shell_scripts/

→˓example_script.openfpga
20 openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k6_frac_N10_adder_

→˓register_scan_chain_depop50_spypad_40nm_openfpga.xml
21 openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_

→˓settings/auto_sim_openfpga.xml
22

23 [ARCHITECTURES]
24 arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k6_frac_N10_tileable_adder_register_

→˓scan_chain_depop50_spypad_40nm.xml
25

26 [BENCHMARKS]
27 bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.blif
28 # Cannot pass automatically. Need change in .v file to match ports
29 # When passed, we can replace the and2 benchmark
30 #bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/test_mode_low/

→˓test_mode_low.blif
31

32 [SYNTHESIS_PARAM]
33 bench0_top = and2
34 bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.act
35 bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/

→˓and2.v
36

(continues on next page)

50 Chapter 5. Architecture Modeling

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

37 #bench0_top = test_mode_low
38 #bench0_act = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/test_mode_

→˓low/test_mode_low.act
39 #bench0_verilog = ${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/test_

→˓mode_low/test_mode_low.v
40 bench0_chan_width = 300
41

42 [SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
43 end_flow_with_test=
44 #vpr_fpga_verilog_formal_verification_top_netlist=

Our OpenFPGA task will now run the full testbench. We run the task with the following command from the root
directory of OpenFPGA:

python3 openfpga_flow/scripts/run_fpga_task.py fpga_verilog/spypad --debug --show_thread_
→˓logs

Note: Python 3.8 or later is required to run this task

We can now see the instantiation of these spypads in fpga_top.v and luts.v. We will start by viewing luts.v with
the following command:

emacs openfpga_flow/tasks/fpga_verilog/spypad/latest/k6_frac_N10_tileable_adder_register_
→˓scan_chain_depop50_spypad_40nm/and2/MIN_ROUTE_CHAN_WIDTH/SRC/sub_module/luts.verilog

The spypads are coming from the frac_lut6_spypad circuit model. In luts.v, the frac_lut6_spypad module is
defined around LINE150 and looks as follows:

module frac_lut6_spypad(in,
sram,
sram_inv,
mode,
mode_inv,
lut4_out,
lut5_out,
lut6_out);
//----- INPUT PORTS -----
input [0:5] in;
//----- INPUT PORTS -----
input [0:63] sram;
//----- INPUT PORTS -----
input [0:63] sram_inv;
//----- INPUT PORTS -----
input [0:1] mode;
//----- INPUT PORTS -----
input [0:1] mode_inv;
//----- OUTPUT PORTS -----
output [0:3] lut4_out;
//----- OUTPUT PORTS -----
output [0:1] lut5_out;
//----- OUTPUT PORTS -----

(continues on next page)

5.4. Creating Spypads Using XML Syntax 51

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

output [0:0] lut6_out;

The fpga_top.v file has some similarities. We can view the fpga_top.v file by running the following command:

emacs openfpga_flow/tasks/fpga_verilog/spypad/latest/k6_frac_N10_tileable_adder_register_
→˓scan_chain_depop50_spypad_40nm/and2/MIN_ROUTE_CHAN_WIDTH/SRC/fpga_top.v

If we look at the module definition and ports of fpga_top.v we should see the following:

module fpga_top(pReset,
prog_clk,
TESTEN,
set,
reset,
clk,
gfpga_pad_frac_lut6_spypad_lut4_out,
gfpga_pad_frac_lut6_spypad_lut5_out,
gfpga_pad_frac_lut6_spypad_lut6_out,
gfpga_pad_GPIO_PAD,
ccff_head,
ccff_tail);

//----- GLOBAL PORTS -----
input [0:0] pReset;
//----- GLOBAL PORTS -----
input [0:0] prog_clk;
//----- GLOBAL PORTS -----
input [0:0] TESTEN;
//----- GLOBAL PORTS -----
input [0:0] set;
//----- GLOBAL PORTS -----
input [0:0] reset;
//----- GLOBAL PORTS -----
input [0:0] clk;
//----- GPOUT PORTS -----
output [0:3] gfpga_pad_frac_lut6_spypad_lut4_out;
//----- GPOUT PORTS -----
output [0:1] gfpga_pad_frac_lut6_spypad_lut5_out;
//----- GPOUT PORTS -----
output [0:0] gfpga_pad_frac_lut6_spypad_lut6_out;
//----- GPIO PORTS -----
inout [0:7] gfpga_pad_GPIO_PAD;
//----- INPUT PORTS -----
input [0:0] ccff_head;
//----- OUTPUT PORTS -----
output [0:0] ccff_tail;

Using General-purpose outputs as separated FPGA I/Os as a guide, we can relate our task like Fig. 5.4

Fig. 5.4: An illustrative example of the lut6 spypad sourced from inside a logic element.

We can view testbench waveforms with GTKWave by running the following command from the root directory:

52 Chapter 5. Architecture Modeling

OpenFPGA Documentation, Release 1.2.2022

gtkwave openfpga_flow/tasks/fpga_verilog/spypad/latest/k6_frac_N10_tileable_adder_
→˓register_scan_chain_depop50_spypad_40nm/and2/MIN_ROUTE_CHAN_WIDTH/and2_formal.vcd &

Note: Information on GTKWave can be found on our documentation page located here: From Verilog to Verification

The waveforms will appear similar to Fig. 5.5

Fig. 5.5: Waveforms of frac_lut6 spypads

5.4.3 Building Spypads

We will modify the k6_frac_N10_adder_chain_40nm_openfpga.xml file found in OpenFPGA to expose the sumout
output from the ADDF module. We can start modifying the file by running the following command:

emacs openfpga_flow/openfpga_arch/k6_frac_N10_adder_chain_40nm_openfpga.xml

Replace LINE214 with the following:

<port type="output" prefix="sumout" lib_name="SUM" size="1" is_global=”true” is_
→˓io=”true”/>

sumout is now a global output. sumout will show up in the fpga_top.v file and will have waveforms in GTKWave
if we run the full testbench. To run the full testbench, we have to modify the hard_adder configuration file:

emacs openfpga_flow/tasks/fpga_verilog/adder/hard_adder/config/task.conf

Comment out the last line of the file to run the full testbench:

#vpr_fpga_verilog_formal_verification_top_netlist=

We now run the task to see our changes:

python3 openfpga_flow/scripts/run_fpga_task.py fpga_verilog/adder/hard_adder --debug --
→˓show_thread_logs

We can view the global ports in fpga_top.v by running the following command:

emacs openfpga_flow/tasks/fpga_verilog/adder/hard_adder/run064/k6_frac_N10_tileable_
→˓adder_chain_40nm/and2/MIN_ROUTE_CHAN_WIDTH/SRC/fpga_top.v

The fpga_top.v should have the following in its module definition:

module fpga_top(pReset,
prog_clk,
set,
reset,

(continues on next page)

5.4. Creating Spypads Using XML Syntax 53

https://github.com/lnis-uofu/OpenFPGA/blob/tutorials/openfpga_flow/openfpga_arch/k6_frac_N10_adder_chain_40nm_openfpga.xml

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

clk,
gfpga_pad_ADDF_sumout,
gfpga_pad_GPIO_PAD,
ccff_head,
ccff_tail);

//----- GLOBAL PORTS -----
input [0:0] pReset;
//----- GLOBAL PORTS -----
input [0:0] prog_clk;
//----- GLOBAL PORTS -----
input [0:0] set;
//----- GLOBAL PORTS -----
input [0:0] reset;
//----- GLOBAL PORTS -----
input [0:0] clk;
//----- GPOUT PORTS -----
output [0:19] gfpga_pad_ADDF_sumout;

The architecture will now look like Fig. 5.6

Fig. 5.6: An illustrative example of the sumout spypad sourced from an adder inside a logic element. There are 10
logic elements in a CLB, and we are looking at the 1st logic element.

We can view the waveform by running GTKWave:

gtkwave openfpga_flow/tasks/fpga_verilog/adder/hard_adder/latest/k6_frac_N10_tileable_
→˓adder_chain_40nm/and2/MIN_ROUTE_CHAN_WIDTH/and2_formal.vcd &

The waveform should have some changes to its value. An example of what it may look like is displayed in Fig. 5.7

Fig. 5.7: Waveforms of sumout spypad

5.4.4 Conclusion

In this tutorial, we have shown how to build spypads into OpenFPGA Architectures using XML Syntax. If you have
any issues, feel free to Contact us.

54 Chapter 5. Architecture Modeling

CHAPTER

SIX

OPENFPGA FLOW

6.1 OpenFPGA Flow

This python script executes the supported OpenFPGA flow for a single benchmark and architecture file for given script
parameters.

The script is located at:

${OPENFPGA_PATH}/openfpga_flow/scripts/run_fpga_flow.py

6.1.1 Basic Usage

At a minimum open_fpga_flow.py requires following command-line arguments:

open_fpga_flow.py <architecture_file> <benchmark_files> --top_module <top_module_name>

where:

• <architecture_file> is the target FPGA architecture

• <circuit_file> The list of files in the benchmark (Supports ../directory/*.v)

• <top_module_name> The name of the top level module in Verilog project

Note: The script will create a tmp run directory in base OpenFPGA path, unless otherwise specified with the
--run_dir option. All stages of the flow will be run within run directory. Several intermediate files will be generated
and maintian in run directory. The path variables declared in architecture XML file will be resolved with absolute
path and copied to the tmp/arch directory before executing flow. All the benchmark files provided will be copied to
tmp/bench directory without maintaining any directory structure. Users should ensure that no important files are
kept in this directory as script will clear directory before each execution

55

OpenFPGA Documentation, Release 1.2.2022

6.1.2 OpenFPGA Variables

Frequently, while running OpenFPGA flow User is suppose to refer external files. To avoid long names and referencing
errors user can use following openfpga variables. These variables are resolved with absolute path while execution
making each run independent of launch directory.

• <OPENFPGA_PATH> Path to the base OpenFPGA directory

• <OPENFPGA_FLOW_PATH> Path to the run_fpga_flow script directory

• <SPICENETLIST_PATH> Path where spice netlists are saved

• <VERILOG_PATH> Path where Verilog modules are saved

• <TECH_PATH> Path where all characterized XML files are stored

For example in architecture file path vairable can be used as follows:

.... lib_path="${TECH_PATH}/PTM_45nm/45nm.pm"

6.1.3 Output

Based on which flow is executed, resulting in intermediate files are generated in run_directory

The output log of the script provides the status of each stage to the user. If any stage failed to execute, the output log
would indicate the stage at which execution failed, and execution traceback.

In case of successful execution, The OpenFPGA flow script will parse parameters listed in configuration from different
result files and will create vpr_stat.txt, vpr_stat_power.txt (optional) file in run_directory.

6.1.4 Advanced Usage

User can pass additional optional command arguments to run_fpga_flow.py script:

run_fpga_flow.py <architecture_file> <benchmark_files> [<options>] [<vpr_options>] [
→˓<fpga-verilog_options>] [<fpga-spice_options>] [<fpga-bitstream_options>] [<ace_
→˓options>]

where:

• <options> are additional arguments passed to run_fpga_flow.py (described below),

• <vpr_options> Any argument prefixed with --vpr-* will be forwarded to vpr script as it is. The detail of
supported vpr argument is available Add corrrect reference

• <fpga-verilog_options> are any arguments not recognized by run_vtr_flow.pl. These will be forwarded
to VPR.

• <ace_options> these arguments will be passed to ACE activity estimator program

For example:

run_fpga_flow.py my_circuit.v my_arch.xml -track_memory_usage --pack --place

will run the VTR flow to map the circuit my_circuit.v onto the architecture my_arch.xml; the arguments --pack
and --place will be passed to VPR (since they are unrecognized arguments to run_vtr_flow.pl). They will cause
VPR to perform only packing and placement.

56 Chapter 6. OpenFPGA Flow

OpenFPGA Documentation, Release 1.2.2022

6.1.5 Detailed Command-line Options

Note: All the commnadline arguments starting with vpr_* , fpga-verilog_* , fpga-spice_* or
fpga-bitstream_* will be passed to VPR without suffix

General Arguments

--top_module <name>

Provide top module name of the benchmark. Default top

--run_dir <directory_path>

Using this option user can provide a custom path as a run directory. Default is tmp directory in OpenFPGA root
path.

--K <lut_inputs>

This option defines the number of inputs to the LUT. By default, the script parses provided architecture file and
finds out inputs to the biggest LUT.

--yosys_tmpl <yosys_template_file>

This option allows the user to provide a custom Yosys template while running a yosys_vpr flow. Default template
is stored in a directory open_fpga_flow\misc\ys_tmpl_yosys_vpr_flow.ys. Alternately, user can create a
copy and modify according to their need. Yosys template script supports TOP_MODULE READ_VERILOG_OPTIONS
VERILOG_FILES LUT_SIZE & OUTPUT_BLIF variables. In case if --verific option is provided then
ADD_INCLUDE_DIR, ADD_LIBRARY_DIR, ADD_BLACKBOX_MODULES, READ_HDL_FILE (should be used instead
of READ_VERILOG_OPTIONS and VERILOG_FILES) and READ_LIBRARY additional varialbes are supported. The
variables can be used as ${var_name}.

--ys_rewrite_tmpl <yosys_rewrite_template_file>

This option allows the user to provide an alternate Yosys template to rewrite Verilog netlist while running a
yosys_vpr flow. The alternate Yosys template script supports all of the main Yosys template script variables.

--verific

This option specifies to use Verific as a frontend for Yosys while running a yosys_vpr flow. The following
standards are used by default for reading input HDL files: * Verilog - vlog95 * System Verilog - sv2012 *
VHDL - vhdl2008 The option should be used only with custom Yosys template containing Verific commands.

--debug

To enable detailed log printing.

--flow_config

User can provide option flow configuration file to override some of the default script parameters. for detail
information refer OpenFPGA Flow Configuration

6.1. OpenFPGA Flow 57

OpenFPGA Documentation, Release 1.2.2022

ACE Arguments

--black_box_ace

Performs ACE simulation on the black box [deprecated]

VPR RUN Arguments

--fix_route_chan_width <channel_number>

Performs VPR implementation for a fixed number of channels defined as the ‘channel_number’

--min_route_chan_width <percentage_slack>

Performs VPR implementation to get minimum channel width and then perform fixed channel rerouting with
percentage_slack increase in the channel width.

--max_route_width_retry <max_retry_count>

Number of times the channel width should be increased and attempt VPR implementation, while performing
min_route_chan_width

--power

--power_tech

blif_vpr_flow Arguments

--activity_file

Activity to be used for the given benchmark while running blif_vpr_flow

--base_verilog

Verilog benchmark file to perform verification while running bliff_vpr_flow

6.1.6 OpenFPGA Flow Configuration file

The OpenFPGA Flow configuration file consists of following sections

• CAD_TOOLS_PATH
Lists executable file path for different CAD tools used in the script

• FLOW_SCRIPT_CONFIG
Lists the supported flows by the script.

• DEFAULT_PARSE_RESULT_VPR
List of default parameters to be parsed from Place, Pack, and Route output

• DEFAULT_PARSE_RESULT_POWER
List of default parameters to be parsed from VPR power analysis output

• INTERMIDIATE_FILE_PREFIX
[Not implemented yet]

Default OpenFPGA_flow Configuration file is located in open_fpga_flow\misc\fpgaflow_default_tool_path.
conf. User-supplied configuration file overrides or extends the default configuration.

58 Chapter 6. OpenFPGA Flow

OpenFPGA Documentation, Release 1.2.2022

6.2 OpenFPGA Task

Tasks provide a framework for running the OpenFPGA Flow on multiple benchmarks, architectures, and set of OpenF-
PGA parameters. The structure of the framework is very similar to VTR-Tasks implementation with additional func-
tionality and minor file extension changes.

6.2.1 Task Directory

The tasks are stored in a TASK_DIRECTORY, which by default points to ${OPENFPGA_PATH}/openfpga_flow/tasks.
Every directory or sub-directory in task directory consisting of ../config/task.conf file can be referred to as a task.

To create as task name called basic_flow following directory has to exist:

${TASK_DIRECTORY}/basic_flow/conf/task.conf

Similarly regression/regression_quick expect following structure:

${TASK_DIRECTORY}/regression/regression_quick/conf/task.conf

6.2.2 Running OpenFPGA Task:

At a minimum run_fpga_task.py requires following command-line arguments:

run_fpga_task.py <task1_name> <task2_name> ... [<options>]

where:

• <task_name> is the name of the task to run

• <options> Other command line arguments described below

6.2.3 Command-line Options

--maxthreads <number_of_threads>

This option defines the number of threads to run while executing task. Each combination of architecture, bench-
mark and set of OpenFPGA Flow options runs in a individual thread.

--skip_thread_logs

Passsing this option skips printing logs from each OpenFPGA Flow script run.

--exit_on_fail

Passsing this option exits the OpenFPGA task script with returncode 1, if any threads fail to execute successfully.
It is mainly used to while performing regression test.

--default_tool_path

Specify the paths to tools as well as the keywords to extract QoR results from log files, when running this task.
By default, the script will use the openfpga_flow/misc/fpgaflow_default_tool_path.conf.

Note: Please use absolute path!!!

6.2. OpenFPGA Task 59

https://docs.verilogtorouting.org/en/latest/vtr/tasks/

OpenFPGA Documentation, Release 1.2.2022

--test_run

This option allows to debug OpenFPGA Task script by skiping actual execution of OpenFPGA flow . Passing
this option prints the list of commnad generated to execute using OpenFPGA flow.

--debug

To enable detailed log printing.

6.2.4 Creating a new OpenFPGA Task

• Create the folder ${TASK_DIRECTORY}/<task_name>

• Create a file ${TASK_DIRECTORY}/<task_name>/config/task.conf in it

• Configure the task as explained in Configuring a new OpenFPGA Task

6.2.5 Configuring a new OpenFPGA Task

The task configuration file task.conf consists of GENERAL, ARCHITECTURES, BENCHMARKS, SYNTHESIS_PARAM and
SCRIPT_PARAM_<var_name> sections. Declaring all the above sections are mandatory.

Note: The configuration file supports all the OpenFPGA Variables refer OpenFPGA Variables section to know more.
Variable in the configuration file is declared as ${PATH:<variable_name>}

General Section

fpga_flow=<yosys_vpr|vpr_blif|yosys>

This option defines which OpenFPGA flow to run. By default yosys_vpr is executed.

power_analysis=<true|false>

Specifies whether to perform power analysis or not.

power_tech_file=<path_to_tech_XML_file>

Declares which tech XML file to use while performing Power Analysis.

spice_output=<true|false>

Setting up this variable generates Spice Netlist at the end of the flow. Equivalent of passing --vpr_fpga_spice
command to OpenFPGA Flow

verilog_output=<true|false>

Setting up this variable generates Verilog Netlist at the end of the flow. Equivalent of passing
--vpr_fpga_spice command to OpenFPGA Flow

timeout_each_job=<true|false>

Specifies the timeout for each OpenFPGA Flow execution. Default is set to 20 min.

verific=<true|false>

Specifies to use Verific as a frontend for Yosys while running a yosys_vpr flow. The following standards are used
by default for reading input HDL files: * Verilog - vlog95 * System Verilog - sv2012 * VHDL - vhdl2008 The
option should be used only with custom Yosys template containing Verific commands.

60 Chapter 6. OpenFPGA Flow

OpenFPGA Documentation, Release 1.2.2022

OpenFPGA_SHELL Sections

User can specify OpenFPGA_SHELL options in this section.

Architectures Sections

User can define the list of architecture files in this section.

arch<arch_label>=<xml_architecture_file_path>

The arch_label variable can be any number of string without white-spaces. xml_architecture_file_path
is path to the actual XML architecture file

Note: In the final OpenFPGA Task result, the architecture will be referred by its arch_label.

Benchmarks Sections

User can define the list of benchmarks files in this section.

bench<bench_label>=<list_of_files_in_benchmark>

The bench_label variable can be any number of string without white-spaces.
list_of_files_in_benchmark is a list of benchmark HDL files paths.

For Example following code shows how to define a benchmarks, with a single file, multiple files and files added
from a specific directory.

[BENCHMARKS]
To declare single benchmark file
bench_design1=${BENCH_PATH}/design/top.v

To declare multiple benchmark file
bench_design2=${BENCH_PATH}/design/top.v,${BENCH_PATH}/design/sub_module.v

To add all files in specific directory to the benchmark
bench_design3=${BENCH_PATH}/design/top.v,${BENCH_PATH}/design/lib/*.v

Note: bench_label is referred again in Synthesis_Param section to provide additional information about bench-
mark

Synthesis Parameter Sections

User can define extra parameters for each benchmark in the BENCHMARKS sections.

bench<bench_label>_top=<Top_Module_Name>

This option defines the Top Level module name for bench_label benchmark. By default, the top-level module
name is considered as a top.

bench<bench_label>_yosys=<yosys_template_file>

This config defines Yosys template script file.

6.2. OpenFPGA Task 61

OpenFPGA Documentation, Release 1.2.2022

bench<bench_label>_chan_width=<chan_width_to_use>

In case of running fixed channel width routing for each benchmark, this option defines the channel width to be
used for bench_label benchmark

bench<bench_label>_act=<activity_file_path>

In case of running blif_vpr_flow this option provides the activity files to be used to generate testbench for
bench_label benchmark

Note: This file is required only when the power_analysis option in the general section is enabled. Otherwise, it is
optional

bench<bench_label>_verilog=<source_verilog_file_path>

In case of running blif_vpr_flow with verification this option provides the source Verilog design for
bench_label benchmark to be used while verification.

bench<bench_label>_read_verilog_options=<Options>

This config defines the read_verilog command options for bench_label benchmark.

bench<bench_label>_yosys_args=<Arguments>

This config defines Yosys arguments to be used in QuickLogic synthesis script for bench_label benchmark.

bench<bench_label>_yosys_dff_map_verilog=<dff_technology_file_path>

This config defines DFF technology file to be used in technology mapping for bench_label benchmark.

bench<bench_label>_yosys_bram_map_verilog=<bram_technology_file_path>

This config defines BRAM technology file to be used in technology mapping for bench_label benchmark.

bench<bench_label>_yosys_bram_map_rules=<bram_technology_rules_file_path>

This config defines BRAM technology rules file to be used in technology mapping for bench_label benchmark.
This config should be used with bench<bench_label>_yosys_bram_map_verilog config.

bench<bench_label>_yosys_dsp_map_verilog=<dsp_technology_file_path>

This config defines DSP technology file to be used in technology mapping for bench_label benchmark.

bench<bench_label>_yosys_dsp_map_parameters=<dsp_mapping_parameters>

This config defines DSP technology parameters to be used in technology mapping for bench_label benchmark.
This config should be used with bench<bench_label>_yosys_dsp_map_verilog config.

bench<bench_label>_verific_include_dir=<include_dir_path>

This config defines include directory path for bench_label benchmark. Verific will search in this directory to
find included files. If there are multiple paths then they can be provided as a comma separated list.

bench<bench_label>_verific_library_dir=<library_dir_path>

This config defines library directory path for bench_label benchmark. Verific will search in this directory to
find undefined modules. If there are multiple paths then they can be provided as a comma separated list.

bench<bench_label>_verific_verilog_standard=<-vlog95|-vlog2k>

The config specifies Verilog language standard to be used while reading the Verilog files for bench_label
benchmark.

bench<bench_label>_verific_systemverilog_standard=<-sv2005|-sv2009|-sv2012>

The config specifies SystemVerilog language standard to be used while reading the SystemVerilog files for
bench_label benchmark.

62 Chapter 6. OpenFPGA Flow

OpenFPGA Documentation, Release 1.2.2022

bench<bench_label>_verific_vhdl_standard=<-vhdl87|-vhdl93|-vhdl2k|-vhdl2008>

The config specifies VHDL language standard to be used while reading the VHDL files for bench_label bench-
mark.

bench<bench_label>_verific_read_lib_name<lib_label>=<lib_name>

The lib_label variable can be any number of string without white-spaces. The config speci-
fies library name for bench_label benchmark where Verilog/SystemVerilog/VHDL files specified by
bench<bench_label>_verific_read_lib_src<lib_label> config will be loaded. This config should be
used only with bench<bench_label>_verific_read_lib_src<lib_label> config.

bench<bench_label>_verific_read_lib_src<lib_label>=<library_src_files>

The lib_label variable can be any number of string without white-spaces. The con-
fig specifies Verilog/SystemVerilog/VHDL files to be loaded into library specified by
bench<bench_label>_verific_read_lib_name<lib_label> config for bench_label benchmark.
The library_src_files should be the source files names separated by commas. This config should be used
only with bench<bench_label>_verific_read_lib_name<lib_label> config.

bench<bench_label>_verific_search_lib=<lib_name>

The config specifies library name for bench_label benchmark from where Verific will look up for external
definitions while reading HDL files.

bench<bench_label>_yosys_cell_sim_verilog=<verilog_files>

The config specifies Verilog files for bench_label benchmark which should be separated by comma.

bench<bench_label>_yosys_cell_sim_systemverilog=<systemverilog_files>

The config specifies SystemVerilog files for bench_label benchmark which should be separated by comma.

bench<bench_label>_yosys_cell_sim_vhdl=<vhdl_files>

The config specifies VHDL files for bench_label benchmark which should be separated by comma.

bench<bench_label>_yosys_blackbox_modules=<blackbox_modules>

The config specifies blackbox modules names for bench_label benchmark which should
be separated by comma (usually these are the modules defined in files specified with
bench<bench_label>_yosys_cell_sim_<verilog/systemverilog/vhdl> option).

Note: The following configs might be common for all benchmarks:

• bench<bench_label>_yosys

• bench<bench_label>_chan_width

• bench<bench_label>_read_verilog_options

• bench<bench_label>_yosys_args

• bench<bench_label>_yosys_bram_map_rules

• bench<bench_label>_yosys_bram_map_verilog

• bench<bench_label>_yosys_cell_sim_verilog

• bench<bench_label>_yosys_cell_sim_systemverilog

• bench<bench_label>_yosys_cell_sim_vhdl

• bench<bench_label>_yosys_blackbox_modules

• bench<bench_label>_yosys_dff_map_verilog

• bench<bench_label>_yosys_dsp_map_parameters

6.2. OpenFPGA Task 63

OpenFPGA Documentation, Release 1.2.2022

• bench<bench_label>_yosys_dsp_map_verilog

• bench<bench_label>_verific_verilog_standard

• bench<bench_label>_verific_systemverilog_standard

• bench<bench_label>_verific_vhdl_standard

• bench<bench_label>_verific_include_dir

• bench<bench_label>_verific_library_dir

• bench<bench_label>_verific_search_lib

The following syntax should be used to define common config: bench_<config_name>_common

Script Parameter Sections

The script parameter section lists set of commnad line pararmeters to be passed to OpenFPGA Flow script. The section
name is defines as SCRIPT_PARAM_<parameter_set_label> where parameter_set_label can be any word without
white spaces. The section is referred with parameter_set_label in the final result file.

For example following code Specifies the two sets (Fixed_Routing_30 and Fixed_Routing_50) of OpenFPGA
Flow arguments.

[SCRIPT_PARAM_Fixed_Routing_30]
Execute fixed routing with channel with 30
fix_route_chan_width=30

[SCRIPT_PARAM_Fixed_Routing_50]
Execute fixed routing with channel with 50
fix_route_chan_width=50

6.2.6 Example Task Configuration File

[GENERAL]
spice_output=false
verilog_output=false
power_analysis = true
power_tech_file = ${PATH:TECH_PATH}/winbond90nm/winbond90nm_power_properties.xml
timeout_each_job = 20*60

[ARCHITECTURES]
arch0=${PATH:ARCH_PATH}/winbond90/k6_N10_rram_memory_bank_SC_winbond90.xml

[BENCHMARKS]
bench0=${PATH:BENCH_PATH}/MCNC_Verilog/s298/s298.v
bench1=${PATH:BENCH_PATH}/MCNC_Verilog/elliptic/elliptic.v

[SYNTHESIS_PARAM]
bench0_top = s298
bench1_top = elliptic

[SCRIPT_PARAM_Slack_30]
min_route_chan_width=1.3

(continues on next page)

64 Chapter 6. OpenFPGA Flow

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

[SCRIPT_PARAM_Slack_80]
min_route_chan_width=1.8

6.2. OpenFPGA Task 65

OpenFPGA Documentation, Release 1.2.2022

66 Chapter 6. OpenFPGA Flow

CHAPTER

SEVEN

OPENFPGA ARCHITECTURE DESCRIPTION

7.1 General Hierarchy

OpenFPGA uses separated XMLs file other than the VPR8 architecture description file. This is to keep a loose integra-
tion to VPR8 so that OpenFPGA can easily integrate any future version of VPR with least engineering effort. However,
to implement a physical FPGA, OpenFPGA requires the original VPR XML to include full physical design details.
Full syntax can be found in Additional Syntax to Original VPR XML.

The OpenFPGA requires two XML files: an architecture description file and a simulation setting description file.

7.1.1 OpenFPGA Architecture Description File

This file contains device-level and circuit-level details as well as annotations to the original VPR architecture. It con-
tains a root node called <openfpga_architecture> under which architecture-level information, such as device-level
description, circuit-level and architecture annotations to original VPR architecture XML are defined.

It consists of the following code blocks

• <circuit_library> includes a number of circuit_model, each of which describe a primitive block in FPGA
architecture, such as Look-Up Tables and multiplexers. Full syntax can be found in Circuit Library.

• <technology_library> includes transistor-level parameters, where users can specify which transistor models
are going to be used when building the circuit models. Full syntax can be found in Technology library.

• <configuration_protocol> includes detailed description on the configuration protocols to be used in FPGA
fabric. Full syntax can be found in Configuration Protocol.

• <connection_block> includes annotation on the connection block definition <connection_block> in orig-
inal VPR XML. Full syntax can be found in Bind circuit modules to VPR architecture.

• <switch_block> includes annotation on the switch block definition <switchlist> in original VPR XML. Full
syntax can be found in Bind circuit modules to VPR architecture.

• <routing_segment> includes annotation on the routing segment definition <segmentlist> in original VPR
XML. Full syntax can be found in Bind circuit modules to VPR architecture.

• <direct_connection> includes annotation on the inter-tile direct connection definitioin <directlist> in
original VPR XML. Full syntax can be found in Inter-Tile Direct Interconnection extensions.

• <pb_type_annotation> includes annotation on the programmable block architecture <complexblocklist>
in original VPR XML. Full syntax can be found in Bind circuit modules to VPR architecture.

Note: <technology_library> will be applied to circuit_model when running FPGA-SPICE. It will not impact
FPGA-Verilog, FPGA-Bitstream, FPGA-SDC.

67

OpenFPGA Documentation, Release 1.2.2022

7.1.2 OpenFPGA Simulation Setting File

This file contains parameters required by testbench generators. It contains a root node
<openfpga_simulation_setting>, under which all the parameters to be used in generate testbenches in
simulation purpose are defined.

It consists of the following code blocks

• <clock_setting> defines the clock-related settings in simulation, such as clock frequency and number of clock
cycles to be used.

• <simulator_option> defines universal options available in both HDL and SPICE simulators. This is mainly
used by FPGA-SPICE.

• <monte_carlo> defines critical parameters to be used in monte-carlo simulations. This is used by FPGA-SPICE.

• <measurement_setting> defines the parameters used to measure signal slew and delays. This is used by
FPGA-SPICE.

• <stimulus> defines the parameters used to generate voltage stimuli in testbenches. This is used by FPGA-
SPICE.

Full syntax can be found in Simulation settings.

Note: the parameters in <clock_setting> will be applied to both FPGA-Verilog and FPGA-SPICE simulations

7.2 Additional Syntax to Original VPR XML

Warning: Note this is only applicable to VPR8!

7.2.1 Models, Complex blocks and Physical Tiles

Each <pb_type> should contain a <mode> that describes the physical implementation of the <pb_type>. Note that
this is fully compatible to the VPR architecture XML syntax.

Note: <model> should include the models that describe the primitive <pb_type> in physical mode.

Note: Currently, OpenFPGA only supports 1 <equivalent_sites> to be defined under each <tile>

<mode disable_packing="<bool">/>

OpenFPGA allows users to define it a mode is disabled for VPR packer. By default, the disable_packing is
set to false. This is mainly used for the mode that describes the physical implementation, which is typically
not packable. Disable it in the packing and signficantly accelerate the packing runtime.

Note: Once a mode is disabled in packing, its child modes will be disabled as well.

Note: The following syntax is only available in OpenFPGA!

68 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

We allow more flexible pin location assignment when a <tile> has a capacity > 1. User can specify the location using
the index of instance, e.g.,

<tile name="io_bottom" capacity="6" area="0">
<equivalent_sites>
<site pb_type="io"/>

</equivalent_sites>
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="top">io_bottom[0:1].outpad io_bottom[0:3].inpad io_bottom[2:5].outpad io_

→˓bottom[4:5].inpad</loc>
</pinlocations>

</tile>

7.2.2 Layout

<layout> may include additioinal syntax to enable tileable routing resource graph generation

tileable="<bool>"

Turn on/off tileable routing resource graph generator.

Tileable routing architecture can minimize the number of unique modules in FPGA fabric to be physically im-
plemented.

Technical details can be found in [TGAG19].

Note: Strongly recommend to enable the tileable routing architecture when you want to PnR large FPGA fabrics,
which can effectively reduce the runtime.

through_channel="<bool>"

Allow routing channels to pass through multi-width and multi-height programable blocks. This is mainly used
in heterogeneous FPGAs to increase routability, as illustrated in Fig. 7.1. By default, it is false.

Warning: Do NOT enable through_channel if you are not using the tileable routing resource graph
generator!

Warning: You cannot use spread pin location for the height > 1 or width >1 tiles when using the
tileable routing resource graph!!! Otherwise, it will cause undriven pins in your device!!!

shrink_boundary="<bool>"

Remove all the routing wires in empty regions. This is mainly used in non-rectangle FPGAs to avoid redundant
routing wires in blank area, as illustrated in Fig. 7.2. By default, it is false.

Warning: Do NOT enable shrink_boundary if you are not using the tileable routing resource graph
generator!

7.2. Additional Syntax to Original VPR XML 69

OpenFPGA Documentation, Release 1.2.2022

Fig. 7.1: Impact on routing architecture when through channel in multi-width and multi-height programmable blocks:
(a) disabled; (b) enabled.

Fig. 7.2: Impact on routing architecture when shrink-boundary: (a) disabled; (b) enabled.

70 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

opin2all_sides="<bool>"

Allow each output pin of a programmable block to drive the routing tracks on all the sides of its adjacent switch
block (see an illustrative example in Fig. 7.3). This can improve the routability of an FPGA fabric with an increase
in the sizes of routing multiplexers in each switch block. By default, it is false.

Fig. 7.3: Impact on routing architecture when the opin-to-all-sides: (a) disabled; (b) enabled.

Warning: Do NOT enable opin2all_sides if you are not using the tileable routing resource graph gen-
erator!

concat_wire="<bool>"

In each switch block, allow each routing track which ends to drive another routing track on the opposite side,
as such a wire can be continued in the same direction (see an illustrative example in fig_concat_wire). In
other words, routing wires can be concatenated in the same direction across an FPGA fabric. This can improve
the routability of an FPGA fabric with an increase in the sizes of routing multiplexers in each switch block. By
default, it is false.

Fig. 7.4: Impact on routing architecture when the wire concatenation: (a) disabled; (b) enabled.

Warning: Do NOT enable concat_wire if you are not using the tileable routing resource graph generator!

concat_pass_wire="<bool>"

In each switch block, allow each routing track which passes to drive another routing track on the opposite side, as
such a pass wire can be continued in the same direction (see an illustrative example in fig_concat_pass_wire).
This can improve the routability of an FPGA fabric with an increase in the sizes of routing multiplexers in each
switch block. By default, it is false.

Warning: Please enable this option if you are looking for device support which is created by any release
which is before v1.1.541!!!

Fig. 7.5: Impact on routing architecture when the pass wire concatenation: (a) disabled; (b) enabled.

Warning: Do NOT enable concat_pass_wire if you are not using the tileable routing resource graph
generator!

A quick example to show tileable routing is enabled, other options, e.g., through channels are disabled:

<layout tileable="true" through_channel="false" shrink_boundary="false" opin2all_sides=
→˓"false" concat_wire="false" concat_pass_wire="false">
</layout>

7.2. Additional Syntax to Original VPR XML 71

OpenFPGA Documentation, Release 1.2.2022

7.2.3 Switch Block

<switch_block> may include addition syntax to enable different connectivity for pass tracks

sub_type="<string>"

Connecting type for pass tracks in each switch block The supported connecting patterns are subset, universal
and wilton, being the same as VPR capability If not specified, the pass tracks will the same connecting patterns
as start/end tracks, which are defined in type

sub_Fs="<int>"

Connectivity parameter for pass tracks in each switch block. Must be a multiple of 3. If not specified, the pass
tracks will the same connectivity as start/end tracks, which are defined in fs

A quick example which defines a switch block
• Starting/ending routing tracks are connected in the wilton pattern

• Each starting/ending routing track can drive 3 other starting/ending routing tracks

• Passing routing tracks are connected in the subset pattern

• Each passing routing track can drive 6 other starting/ending routing tracks

<device>
<switch_block type="wilton" fs="3" sub_type="subset" sub_fs="6"/>

</device>

7.2.4 Routing Segments

OpenFPGA suggests users to give explicit names for each routing segement in <segmentlist> This is used to link
circuit_model to routing segments.

A quick example which defines a length-4 uni-directional routing segment called L4 :

<segmentlist>
<segment name="L4" freq="1" length="4" type="undir"/>

</segmentlist>

Note: Currently, OpenFPGA only supports uni-directional routing architectures

7.3 Configuration Protocol

Configuration protocol is the circuitry designed to program an FPGA. As an interface, configuration protocol could be
really different in FPGAs, depending on the application context. OpenFPGA supports versatile configuration protocol,
providing different trade-offs between speed and area.

Under configuration protocol, if the configuration is QL Memory Bank with flatten BL/WL protocol, there might be
optional configuration setting call <ql_memory_bank_config_setting>. In QL Memory Bank configuration protocol,
configuration bits are organized as BitLine (BL) x WordLine (WL) By default, OpenFPGA will keep BL and WL in
square shape if possible where BL might be one bit longer than WL in some cases

For example:
• If the configuration bits of a PB is 9 bits, then BL=3 and WL=3

72 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

• If the configuration bits of a PB is 11 bits, then BL=4 and WL=3 (where there is one extra bit
as phantom bit)

• If the configuration bits of a PB is 14 bits, then BL=4 and WL=4 (where there is two extra bits
as phantom bits)

This QL Memory Bank configuration setting allow OpenFPGA to use a fixed WL size, instead of default approach

7.3.1 Template

<configuration_protocol>
<organization type="<string>" circuit_model_name="<string>" num_regions="<int>"/>
<ql_memory_bank_config_setting>
<pb_type name="<string>" num_wl="<int>"/>

</ql_memory_bank_config_setting>
</configuration_protocol>

type="scan_chain|memory_bank|standalone|frame_based|ql_memory_bank"

Specify the type of configuration circuits.

OpenFPGA supports different types of configuration protocols to program FPGA fabrics:
• scan_chain: configurable memories are connected in a chain. Bitstream is loaded serially to program

a FPGA

• frame_based: configurable memories are organized by frames. Each module of a FPGA fabric, e.g.,
Configurable Logic Block (CLB), Switch Block (SB) and Connection Block (CB), is considered as a
frame of configurable memories. Inside each frame, all the memory banks are accessed through an
address decoder. Users can write each memory cell with a specific address. Note that the frame-based
memory organization is applid hierarchically. Each frame may consists of a number of sub frames,
each of which follows the similar organization.

• memory_bank: configurable memories are organized in an array, where each element can be accessed
by an unique address to the BL/WL decoders

• ql_memory_bank: configurable memories are organized in an array, where each element can be ac-
cessed by an unique address to the BL/WL decoders. This is a physical design friendly memory bank
organization, where BL/WLs are efficiently shared by programmable blocks per column and row

• standalone: configurable memories are directly accessed through ports of FPGA fabrics. In other
words, there are no protocol to control the memories. This allows full customization on the configu-
ration protocol for hardware engineers.

Note: Avoid to use standalone when designing an FPGA chip. It will causes a huge number of I/Os required,
far beyond any package size. It is well applicable to eFPGAs, where designers do need customized protocols
between FPGA and processors.

Warning: Currently FPGA-SPICE only supports standalone memory organization.

Warning: Currently RRAM-based FPGA only supports memory-bank organization for Verilog Generator.

7.3. Configuration Protocol 73

OpenFPGA Documentation, Release 1.2.2022

circuit_model_name="<string>"

Specify the name of circuit model to be used as configurable memory.

• scan_chain requires a circuit model type of ccff

• frame_based requires a circuit model type of sram

• memory_bank requires a circuit model type of sram

• ql_memory_bank requires a circuit model type of sram

• standalone requires a circuit model type of sram

num_regions="<int>"

Specify the number of configuration regions to be used across the fabrics. By default, it will be only 1 con-
figuration region. Each configuration region contains independent configuration protocols, but the whole fabric
should employ the same type of configuration protocols. For example, an FPGA fabric consists of 4 configuration
regions, each of which includes a configuration chain. The more configuration chain to be used, the fast config-
uration runtime will be, but at the cost of more I/Os in the FPGA fabrics. The organization of each configurable
region can be customized through the fabric key (see details in Fabric Key).

Warning: Currently, multiple configuration regions is not applicable to

• standalone configuration protocol.

• ql_memory_bank configuration protocol when BL/WL protocol flatten is selected

Note: For ql_memory_bank configuration protocol when BL/WL protocol shift_register is selected, dif-
ferent configuration regions cannot share any WLs on the same row! In such case, the default fabric key may
not work. Strongly recommend to craft your own fabric key based on your configuration region plannning!

name="<string>"

Specify the name of PB type, for example: clb, dsp, bram and etc

num_wl="<int>"

Fix the size of WL

For example:
Considered that the configuration bits of a PB is 400 bits.

If num_wl is not defined, then
• BL will be 20 [=ceiling(square_root(400))]

• WL will be 20 [=ceiling(400/20)]

If num_wl is defined as 10, then
• WL will be fixed as 10

• BL will be 40 [=ceiling(400/10)]

If num_wl is defined as 32, then
• WL will be fixed as 32

• BL will be 13 [=ceiling(400/32)]

• There will be 16 bits [=(32x13)-400] as phantom bits.

74 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

7.3.2 Configuration Chain Example

The following XML code describes a scan-chain circuitry to configure the core logic of FPGA, as illustrated in Fig.
7.6. It will use the circuit model defined in Fig. 7.41.

<configuration_protocol>
<organization type="scan_chain" circuit_model_name="ccff" num_regions="<int>">
<programming_clock port="<string>" ccff_head_indices="<string>"/>

</organization>
</configuration_protocol>

Note that for each configuration chain, its programming clock can be separated or grouped by using the syntax
programming_clock.

Note: Only applicable to multi-head configuration chains (number of regions is greater than 1). If not specified, all
the chains share the same clock.

port="<string>"

Define the port name of a programming clock. This should be a valid global clock port defined in the circuit
models whose type is ccff. See details in Regular Configuration-chain Flip-flop.

ccff_head_indices="<string>"

Define the indices of the configuration chains which will be controlled by the programming clock defined using
XML syntax port. The indices should consist of valid indices within the range of number of regions.

In the following example, a 6-head configuration protocol (corresponding to Fig. 7.7) is defined where the first three
chains share a common clock CK[0], where the forth chain is driven by an individual clock CK[1] and the other two
chains are driven by a common clock CK[2].

<circuit_model type="ccff" name="ccff" prefix="ccff" verilog_netlist="ccff.v" spice_
→˓netlist="ccff.sp">
<port type="input" prefix="D" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="QN" size="1"/>
<port type="clock" prefix="CK" size="1" is_global="true" is_prog="true" is_clock="true

→˓"/>
</circuit_model>
<configuration_protocol>
<organization type="scan_chain" circuit_model_name="ccff" num_regions="6">
<programming_clock port="CK[0]" ccff_head_indices="0,1,2"/>
<programming_clock port="CK[1]" ccff_head_indices="3"/>
<programming_clock port="CK[2]" ccff_head_indices="4,5"/>

</organization>
</configuration_protocol>

7.3. Configuration Protocol 75

OpenFPGA Documentation, Release 1.2.2022

Fig. 7.6: Example of a configuration chain to program core logic of a FPGA

76 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

Fig. 7.7: Examples of single- and multiple- region configuration chains

7.3.3 Frame-based Example

The following XML code describes frame-based memory banks to configure the core logic of FPGA. It will use the
circuit model defined in Fig. 7.30.

<configuration_protocol>
<organization type="frame_based" circuit_model_name="config_latch"/>

</configuration_protocol>

Through frame-based configuration protocol, each memory cell can be accessed with an unique address given to de-
coders. Fig. 7.8 illustrates an example about how the configurable memories are organizaed inside a Logic Element
(LE) shown in Fig. 5.1. The decoder inside the LE will enable the decoders of the Look-Up Table (LUT) and the routing
multiplexer, based on the given address at address[2:2]. When the decoder of sub block, e.g., the LUT, is enabled,
each memory cells can be accessed throught the address[1:0] and the data to write is provided at data_in.

Fig. 7.9 shows a hierarchical view on how the frame-based decoders across a FPGA fabric.

Note: Frame-based decoders does require a memory cell to have

• two outputs (one regular and another inverted)

• a Bit-Line input to load the data

• a Word-Line input to enable data write

7.3. Configuration Protocol 77

OpenFPGA Documentation, Release 1.2.2022

Fig. 7.8: Example of a frame-based memory organization inside a Logic Element

Fig. 7.9: Frame-based memory organization in a hierarchical view

78 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

Warning: Please do NOT add inverted Bit-Line and Word-Line inputs. It is not supported yet!

When multiple configuration region is applied, the configuration frames will be grouped into different configuration
regions. Each region has a separated data input bus and dedicated address decoders. As such, the configuration frame
groups can be programmed in parallel.

7.3.4 Memory bank Example

The following XML code describes a memory-bank circuitry to configure the core logic of FPGA, as illustrated in Fig.
7.10. It will use the circuit model defined in Fig. 7.28. Users can customized the number of memory banks to be used
across the fabrics. By default, it will be only 1 memory bank. Fig. 7.10 shows an example where 4 memory banks are
defined. The more memory bank to be used, the fast configuration runtime will be, but at the cost of more I/Os in the
FPGA fabrics. The organization of each configurable region can be customized through the fabric key (see details in
Fabric Key).

<configuration_protocol>
<organization type="memory_bank" circuit_model_name="sram_blwl"/>

</configuration_protocol>

Fig. 7.10: Example of (a) a memory organization using memory decoders; (b) single memory bank across the fabric;
and (c) multiple memory banks across the fabric.

7.3. Configuration Protocol 79

OpenFPGA Documentation, Release 1.2.2022

Note: Memory-bank decoders does require a memory cell to have

• two outputs (one regular and another inverted)

• a Bit-Line input to load the data

• a Word-Line input to enable data write

Warning: Please do NOT add inverted Bit-Line and Word-Line inputs. It is not supported yet!

7.3.5 QuickLogic Memory bank Example

The following XML code describes a physical design friendly memory-bank circuitry to configure the core logic of
FPGA, as illustrated in Fig. 7.10. It will use the circuit model defined in Fig. 7.28.

The BL and WL protocols can be customized through the XML syntax bl and wl.

Note: If not specified, the BL/WL protocols will use decoders.

<configuration_protocol>
<organization type="ql_memory_bank" circuit_model_name="sram_blwl">
<bl protocol="<string>" num_banks="<int>"/>
<wl protocol="<string>" num_banks="<int>"/>

</organization>
</configuration_protocol>

protocol="decoder|flatten|shift_register"

• decoder: BLs or WLs are controlled by decoders with address lines. For BLs, the decoder includes an
enable signal as well as a data input signal. This is the default option if not specified. See an illustrative
example in Fig. 7.11.

• flatten: BLs or WLs are directly available at the FPGA fabric. In this way, all the configurable memorys
on the same WL can be written through the BL signals in one clock cycle. See an illustrative example in
Fig. 7.12.

• shift_register: BLs or WLs are controlled by shift register chains. The BL/WLs are programming
each time the shift register chains are fully loaded. See an illustrative example in Fig. 7.13.

Fig. 7.11: Example of (a) a memory organization using address decoders; (b) single memory bank across the fabric;
and (c) multiple memory banks across the fabric.

Fig. 7.12: Example of (a) a memory organization with direct access to BL/WL signals; (b) single memory bank across
the fabric; and (c) multiple memory banks across the fabric.

Fig. 7.13: Example of (a) a memory organization using shift register chains to control BL/WLs; (b) single memory
bank across the fabric; and (c) multiple memory banks across the fabric.

80 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

num_banks="<int>"

Specify the number of shift register banks (i.e., independent shift register chains) to be used in each configuration
region. When enabled, the length of each shift register chain will be sized by OpenFPGA automatically based
on the number of BL/WLs in each configuration region. OpenFPGA will try to create similar sizes for the shift
register chains, in order to minimize the number of HDL modules. If not specified, the default number of banks
will be 1.

Note: This is available applicable to shift-register-based BL/WL protocols

Note: More customization on the shift register chains can be enabled through Fabric Key

Note: The flip-flop for WL shift register requires an enable signal to gate WL signals when loading WL shift registers

Note: Memory-bank decoders does require a memory cell to have

• two outputs (one regular and another inverted)

• a Bit-Line input to load the data

• a Word-Line input to enable data write

• (optional) a Word-Line read input to enabe data readback

Warning: Please do NOT add inverted Bit-Line and Word-Line inputs. It is not supported yet!

7.3.6 Standalone SRAM Example

In the standalone configuration protocol, every memory cell of the core logic of a FPGA fabric can be directly accessed
at the top-level module, as illustrated in Fig. 7.14.

Fig. 7.14: Vanilla (standalone) memory organization in a hierarchical view

The following XML code shows an example where we use the circuit model defined in Fig. 7.28.

7.3. Configuration Protocol 81

OpenFPGA Documentation, Release 1.2.2022

<configuration_protocol>
<organization type="standalone" circuit_model_name="sram_blwl"/>

</configuration_protocol>

Note: The standalone protocol does require a memory cell to have

• two outputs (one regular and another inverted)

• a Bit-Line input to load the data

• a Word-Line input to enable data write

Warning: Please do NOT add inverted Bit-Line and Word-Line inputs. It is not supported yet!

Warning: This is a vanilla configuration method, which allow users to build their own configuration protocol on
top of it.

7.4 Inter-Tile Direct Interconnection extensions

This section introduces extensions on the architecture description file about existing interconnection description.

7.4.1 Directlist

The original direct connections in the directlist section are documented here. Its description is given below:

<directlist>
<direct name="string" from_pin="string" to_pin="string" x_offset="int" y_offset="int"␣

→˓z_offset="int" switch_name="string"/>
</directlist>

Note: These options are required

Our extension include three more options:

<directlist>
<direct name="string" from_pin="string" to_pin="string" x_offset="int" y_offset="int"␣

→˓z_offset="int" switch_name="string" interconnection_type="string" x_dir="string" y_dir=
→˓"string"/>
</directlist>

Note: these options are optional. However, if interconnection_type is set x_dir and y_dir are required.

82 Chapter 7. OpenFPGA Architecture Description

http://docs.verilogtorouting.org/en/latest/arch/reference/?highlight=directlist#direct-inter-block-connections

OpenFPGA Documentation, Release 1.2.2022

interconnection_type="<string>"

the type of interconnection should be a string. Available types are NONE | column | row, specifies if it applies on
a column or a row ot if it doesn’t apply.

x_dir="<string>"

Available directionalities are positive | negative, specifies if the next cell to connect has a bigger or lower x
value. Considering a coordinate system where (0,0) is the origin at the bottom left and x and y are positives:

• x_dir=”positive”:

– interconnection_type=”column”: a column will be connected to a column on the right, if it exists.

– interconnection_type=”row”: the most on the right cell from a row connection will connect the most
on the left cell of next row, if it exists.

• x_dir=”negative”:

– interconnection_type=”column”: a column will be connected to a column on the left, if it exists.

– interconnection_type=”row”: the most on the left cell from a row connection will connect the most
on the right cell of next row, if it exists.

y_dir="<string>"

Available directionalities are positive | negative, specifies if the next cell to connect has a bigger or lower x
value. Considering a coordinate system where (0,0) is the origin at the bottom left and x and y are positives:

• y_dir=”positive”:

– interconnection_type=”column”: the bottom cell of a column will be connected to the next column
top cell, if it exists.

– interconnection_type=”row”: a row will be connected on an above row, if it exists.

• y_dir=”negative”:

– interconnection_type=”column”: the top cell of a column will be connected to the next column
bottom cell, if it exists.

– interconnection_type=”row”: a row will be connected on a row below, if it exists.

7.4.2 Example

For this example, we will study a scan-chain implementation. The description could be:

<directlist>
<direct name="scff_chain" from_pin="clb.sc_out" to_pin="clb.sc_in" x_offset="0" y_

→˓offset="-1" z_offset="0" interconnection_type="column" x_dir="positive" y_dir="positive
→˓"/>
</directlist>

Fig. 7.15 is the graphical representation of the above scan-chain description on a 4x4 FPGA.

In this figure, the red arrows represent the initial direct connection. The green arrows represent the point to point
connection to connect all the columns of CLB.

7.4. Inter-Tile Direct Interconnection extensions 83

OpenFPGA Documentation, Release 1.2.2022

Fig. 7.15: An example of scan-chain implementation

7.4.3 Truth table

A point to point connection can be applied in different ways than showed in the example section. To help the designer
implement his point to point connection, a truth table with our new parameters id provided below.

Fig. 7.16 provides all possible variable combination and the connection it will generate.

7.5 Simulation settings

All the simulation settings are stored under the XML node <openfpga_simulation_setting> General organization
is as follows

<openfpga_simulation_setting>
<clock_setting>
<operating frequency="<int>|<string>" num_cycles="<int>|<string>" slack="<float>">
<clock name="<string>" port="<string>" frequency="<float>"/>
...

</operating>
<programming frequency="<int>">
<clock name="<string>" port="<string>" frequency="auto|<float>" is_shift_register="

→˓<bool>"/>
...

</programming>
</clock_setting>
<simulator_option>
<operating_condition temperature="<int>"/>
<output_log verbose="<bool>" captab="<bool>"/>
<accuracy type="<string>" value="<float>"/>

(continues on next page)

84 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

Fig. 7.16: Point to point truth table

(continued from previous page)

<runtime fast_simulation="<bool>"/>
</simulator_option>
<monte_carlo num_simulation_points="<int>"/>
<measurement_setting>
<slew>
<rise upper_thres_pct="<float>" lower_thres_pct="<float>"/>
<fall upper_thres_pct="<float>" lower_thres_pct="<float>"/>

</slew>
<delay>
<rise input_thres_pct="<float>" output_thres_pct="<float>"/>
<fall input_thres_pct="<float>" output_thres_pct="<float>"/>

</delay>
</measurement_setting>
<stimulus>
<clock>
<rise slew_type="<string>" slew_time="<float>"/>
<fall slew_type="<string>" slew_time="<float>"/>

</clock>
<input>
<rise slew_type="<string>" slew_time="<float>"/>
<fall slew_type="<string>" slew_time="<float>"/>

</input>
</stimulus>

(continues on next page)

7.5. Simulation settings 85

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

</openfpga_simulation_setting>

7.5.1 Clock Setting

Clock setting focuses on defining the clock periods to applied on FPGA fabrics As a programmable device, an FPGA
has two types of clocks. The first is the operating clock, which is applied by users’ implementations. The second is
the programming clock, which is applied on the configuration protocol to load users’ implementation to FPGA fabric.
OpenFPGA allows users to freely define these clocks as well as the number of clock cycles. We should the full syntax
in the code block below and then provide details on each of them.

<clock_setting>
<operating frequency="<float>|<string>" num_cycles="<int>|<string>" slack="<float>">
<clock name="<string>" port="<string>" frequency="<float>"/>
...

</operating>
<programming frequency="<float>">
<clock name="<string>" port="<string>" frequency="auto|<float>" is_shift_register="

→˓<bool>"/>
...

</programming>
</clock_setting>

Operating clock setting

Operating clocks are defined under the XML node <operating> To support FPGA fabrics with multiple clocks,
OpenFPGA allows users to define a default operating clock frequency as well as a set of clock ports using different
frequencies.

<operating frequency="<float>|<string>" num_cycles="<int>|<string>" slack="<float>"/>

• frequency="<float|string> Specify frequency of the operating clock. OpenFPGA allows users to specify an
absolute value in the unit of [Hz] Alternatively, users can bind the frequency to the maximum clock frequency
analyzed by VPR STA engine. This is very useful to validate the maximum operating frequency for users’
implementations In such case, the value of this attribute should be a reserved word auto.

Note: The frequency is considered as a default operating clock frequency, which will be used when a clock pin of a
multi-clock FPGA fabric lacks explicit clock definition.

• num_cycles="<int>|<string>" can be either auto or an integer. When set to auto, OpenFPGA will infer the
number of clock cycles from the average/median of all the signal activities. When set to an integer, OpenFPGA
will use the given number of clock cycles in HDL and SPICE simulations.

• slack="<float>" add a margin to the critical path delay in the HDL and SPICE simulations. This parameter
is applied to the critical path delay provided by VPR STA engine. So it is only valid when option frequency
is set to auto. This aims to compensate any inaccuracy in STA results. Typically, the slack value is between 0
and 1. For example, slack=0.2 implies that the actual clock period in simulations is 120% of the critical path
delay reported by VPR.

Note: Only valid when option frequency is set to auto

86 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

Warning: Avoid to use a negative slack! This may cause your simulation to fail!

<clock name="<string>" port="<string>" frequency="<float>"/>

• name="<string> Specify a unique name for a clock signal. The name will be used in generating clock stimulus
in testbenches.

• port="<string> Specify the clock port which the clock signal should be applied to. The clock port must be
a valid clock port defined in OpenFPGA architecture description. Explicit index is required, e.g., clk[1:1].
Otherwise, default index 0 will be considered, e.g., clk will be translated as clk[0:0].

Note: You can define clock ports either through the tile annotation in Physical Tile Annotation or Circuit Port.

• frequency="<float> Specify frequency of a clock signal in the unit of [Hz]

Warning: Currently, we only allow operating clocks to be overwritten!!!

Programming clock setting

Programming clocks are defined under the XML node <programming>

<programming frequency="<float>"/>

• frequency="<float>" Specify the frequency of the programming clock using an absolute value in the unit of
[Hz] This frequency is used in testbenches for programming phase simulation.

<clock name="<string>" port="<string>" frequency="auto|<float>" is_shift_register="<bool>"/
>

• name="<string> Specify a unique name for a clock signal. The name should match a reserved word of pro-
gramming clock, i.e., bl_sr_clock and wl_sr_clock.

Note: The bl_sr_clock represents the clock signal driving the BL shift register chains, while the
wl_sr_clock represents the clock signal driving the WL shift register chains

• port="<string> Specify the clock port which the clock signal should be applied to. The clock port must be
a valid clock port defined in OpenFPGA architecture description. Explicit index is required, e.g., clk[1:1].
Otherwise, default index 0 will be considered, e.g., clk will be translated as clk[0:0].

• frequency="auto|<float> Specify frequency of a clock signal in the unit of [Hz]. If auto is used, the
programming clock frequency will be inferred by OpenFPGA.

• is_shift_register="<bool> Specify if this clock signal is used to drive shift register chains in BL/WL
protocols

Note: Programming clock frequency is typically much slower than the operating clock and strongly depends on the
process technology. Suggest to characterize the speed of your configuration protocols before specifying a value!

7.5. Simulation settings 87

OpenFPGA Documentation, Release 1.2.2022

7.5.2 Simulator Option

This XML node includes universal options available in both HDL and SPICE simulators.

Note: This is mainly used by FPGA-SPICE

Operating condition

<operating_condition temperature="<int>"/>``

• temperature="<int>" Specify the temperature which will be defined in SPICE netlists. In the top SPICE
netlists, it will show as

.temp <int>

Output logs

<output_log verbose="<bool>" captab="<bool>"/>``

Specify the options in outputting simulation results to log files

• verbose="true|false"

Specify if the simulation waveforms should be printed out after SPICE simulations. If turned on, it will show in
all the SPICE netlists

.option POST

Note: when the SPICE netlists are large or a long simulation duration is defined, the post option is recommended to
be off. If not, huge disk space will be occupied by the waveform files.

• captab="true|false" Specify if the capacitances of all the nodes in the SPICE netlists will be printed out. If
turned on, it will show in the top-level SPICE netlists

.option CAPTAB

Note: When turned on, the SPICE simulation runtime may increase.

Simulation Accuracy

<accuracy type="<string>" value="<float>"/>``

Specify the simulation steps (accuracy) to be used

• type="abs|frac"

Specify the type of transient step in SPICE simulation.

– When abs is selected, the accuracy should be the absolute value, such as 1e-12.

– When frac is selected, the accuracy is the number of simulation points in a clock cycle period, for example,
100.

88 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

• value="<float>"

Specify the transient step in SPICE simulation. Typically, the smaller the step is, the higher the accuracy that
can be reached while the long simulation runtime is. The recommended accuracy is between 0.1ps and 0.01ps,
which generates good accuracy and runtime is not significantly long.

Simulation Speed

<runtime fast_simulation="<bool>"/>

Specify if any runtime optimization will be applied to the simulator.

• fast_simulation="true|false"

Specify if fast simulation is turned on for the simulator.

If turned on, it will show in the top-level SPICE netlists

.option fast

7.5.3 Monte Carlo Simulation

<monte_carlo num_simulation_points="<int>"/>

Run SPICE simulations in monte carlo mode. This is mainly for FPGA-SPICE When turned on, FPGA-SPICE
will apply the device variation defined in Technology library to monte carlo simulation

• num_simulation_points="<int>"

Specify the number of simulation points to be considered in monte carlo. The larger the number is, the longer
simulation time will be but more accurate the results will be.

7.5.4 Measurement Setting

• Users can define the parameters in measuring the slew of signals, under XML node <slew>

• Users can define the parameters in measuring the delay of signals, under XML node <delay>

Both delay and slew measurement share the same syntax in defining the upper and lower voltage thresholds.

<rise|fall upper_thres_pct="<float>" lower_thres_pct="<float>"/>

Define the starting and ending point in measuring the slew of a rising or a falling edge of a signal.

• upper_thres_pct="<float>" the ending point in measuring the slew of a rising edge. It is expressed
as a percentage of the maximum voltage of a signal. For example, the meaning of upper_thres_pct=0.95 is
depicted in Fig. 7.17.

• lower_thres_pct="<float>" the starting point in measuring the slew of a rising edge. It is expressed
as a percentage of the maximum voltage of a signal. For example, the meaning of lower_thres_pct=0.05 is
depicted in Fig. 7.17.

7.5. Simulation settings 89

OpenFPGA Documentation, Release 1.2.2022

Fig. 7.17: An illustrative example on measuring the slew and delay of signals

90 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

7.5.5 Stimulus Setting

Users can define the slew time of input and clock signals to be applied to FPGA I/Os in testbenches under XML node
<clock> and <input> respectively. This is used by FPGA-SPICE in generating testbenches

<rise|fall slew_type="<string>" slew_time="<float>"/>

Specify the slew rate of an input or clock signal at rising or falling edge

• slew_type="[abs|frac]" specify the type of slew time definition at the rising or falling edge of a
lock/input port.

– The type of abs implies that the slew time is the absolute value. For example, slew_type="abs"
slew_time="20e-12" means that the slew of a clock signal is 20ps.

– The type of frac means that the slew time is related to the period (frequency) of the clock signal. For
example, slew_type="frac" slew_time="0.05" means that the slew of a clock signal takes 5%
of the period of the clock.

• slew_time="<float>" specify the slew rate of an input or clock signal at the rising/falling edge.

Fig. 7.17 depicts the definition of the slew and delays of signals and the parameters that can be supported by
FPGA-SPICE.

7.6 Technology library

Technology library aims to describe transistor-level parameters to be applied to the physical design of FPGAs. In
addition to transistor models, technology library also supports the definition of process variations on any transistor
models. General organization is as follows.

<technology_library>
<device_library>
<device_model name="<string>" type="<string>">
<lib type="<string>" corner="<string>" ref="<string>" path="<string>"/>
<design vdd="<float>" pn_ratio="<float>"/>
<pmos name="<string>" chan_length="<float>" min_width="<float>" max_width="<float>

→˓" variation="<string>"/>
<nmos name="<string>" chan_length="<float>" min_width="<float>" max_width="<float>

→˓" variation="<string>"/>
<rram rlrs="<float>" rhrs="<float>" variation="<string>"/>

</device_model>
</device_library>
<variation_library>
<variation name="<string>" abs_deviation="<float>" num_sigma="<int>"/>

</variation_library>
</technology_library>

7.6. Technology library 91

OpenFPGA Documentation, Release 1.2.2022

7.6.1 Device Library

Device library contains detailed description on device models, such as transistors and Resistive Random Access Mem-
ories (RRAMs). A device library may consist of a number of <device_model> and each of them denotes a different
transistor model.

A device model represents a transistor/RRAM model available in users’ technology library.

<device_model name="<string>" type="<string>">

Specify the name and type of a device model

• name="<string>" is the unique name of the device model in the context of <device_library>.

• type="transistor|rram" is the type of device model in terms of functionality Currently, OpenFPGA
supports two types: transistor and RRAM.

Note: the name of <device_model> may not be the name in users’ technology library.

<lib type="<string>" corner="<string>" ref="<string>" path="<string>"/>

Specify the technology library that defines the device model

• type="academia|industry" For the industry library, FPGA-SPICE will use .lib <lib_file_path>
to include the library file in SPICE netlists. For academia library, FPGA-SPICE will use .include
<lib_file_path> to include the library file in SPICE netlists

• corner="<string>" is the process corner name available in technology library. For example, the type of
transistors can be TT, SS and FF etc.

• ref="<string>" specify the reference of in calling a transistor model. In SPICE netlists, define a transistor
follows the convention:

<model_ref><trans_name> <ports> <model_name>

The reference depends on the technology and the type of library. For example, the PTM bulk model uses “M”
as the reference while the PTM FinFET model uses “X” as the reference.

• path="<string>" specify the path of the technology library file. For example:

lib_path=/home/tech/45nm.pm.

<design vdd="<float>" pn_ratio="<float>"/>

Specify transistor-level design parameters

• vdd="<float>" specify the working voltage for the technology. The voltage will be used as the supply
voltage in all the SPICE netlists.

• pn_ratio="<float>" specify the ratio between p-type and n-type transistors. The ratio will be used when
building circuit structures such as inverters, buffers, etc.

<pmos|nmos name="<string>" chan_length="<float>" min_width="<float>" max_width="<float>" variation="<string>"/
>

Specify device-level parameters for transistors

• name="<string>" specify the name of the p/n type transistor, which can be found in the manual of the
technology provider.

• chan_length="<float>" specify the channel length of a p/n type transistor.

92 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

• min_width="<float>" specify the minimum width of a p/n type transistor. This parameter will be used
in building inverter, buffer, etc. as a base number for transistor sizing.

• max_width="<float>" specify the maximum width of a p/n type transistor. This parameter will be used
in building inverter, buffer, etc. as a base number for transistor sizing. If the required transistor width
exceeds the maximum width, multiple transistors will be instanciated. Note that for FinFET technology,
your max_width should be the same as your min_width.

Note: The max_width is optional. By default, it will be set to be same as the min_width.

• variation="<string>" specify the variation name defined in the <variation_library>

<rram rlrs="<float>" rhrs="<float>" variation="<string>"/>

Specify device-level parameters for RRAMs

• rlrs="<float>" specify the resistance of Low Resistance State (LRS) of a RRAM device

• rhrs="<float>" specify the resistance of High Resistance State (HRS) of a RRAM device

• variation="<string>" specify the variation name defined in the <variation_library>

7.6.2 Variation Library

Variation library contains detailed description on device variations specified by users. A variation library may consist
of a number of <variation> and each of them denotes a different variation parameter.

<variation name="<string>" abs_deviation="<float>" num_sigma="<int>"/>

Specify detail variation parameters

• name="<string>" is the unique name of the device variation in the context of <variation_library>.
The name will be used in <device_model> to bind variations

• abs_variation="<float>" is the absolute deviation of a variation

• num_sigma="<int>" is the standard deviation of a variation

7.7 Circuit Library

Circuit design is a dominant factor in Power, Performance, Area (P.P.A.) of FPGA fabrics. Upon practical applications,
the hardware engineers may select various circuits to implement their FPGA fabrics. For instance, a ultra-low-power
FPGA may be built with ulta-low-power circuit cells while a high-performance FPGA may use absolutely different
circuit cells. OpenFPGA provide enriched XML syntax for users to highly customize their circuits in FPGA fabric.

In the XML file, users can define a library of circuits, each of which corresponds to a primitive module required in the
FPGA architecture. Users can specify if the Verilog/SPICE netlist of the module is either auto-generated by OpenFPGA
or provided by themselves. As such, OpenFPGA can support any circuit design, leading to high flexibility in building
FPGA fabrics.

In principle, a circuit library consists of a number of <circuit_model>, each of which correspond to a circuit design.
OpenFPGA supports a wide range of circuit designs. The <circuit_model> could be as small as a cornerstone cell,
such as inverter, buffer etc., or as large as a hardware IP, such as Block RAM.

<circuit_library>
<circuit_model type="<string>" name="<string>">
<!-- Detailed circuit-level design parameters -->

(continues on next page)

7.7. Circuit Library 93

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

</circuit_model>
<!-- More circuit models -->

</circuit_library>

Currently, OpenFPGA supports the following categories of circuits:

• inverters/buffers

• pass-gate logic, including transmission gates and pass transistors

• standard cell logic gates, including AND, OR and MUX2

• metal wires

• multiplexers

• flip-flops

• Look-Up Tables, including single-output and multi-output fracturable LUTs

• Statis Random Access Memory (SRAM)

• scan-chain flip-flops

• I/O pad

• hardware IPs

7.7.1 Circuit Model

As OpenFPGA supports many types of circuit models and their circuit-level implementation could be really different,
each type of circuit model has special syntax to customize their designs. However, most circuit models share the
common generality in XML language. Here, we focus these common syntax and we will detail special syntax in
Circuit model examples

<circuit_model type="<string>" name="<string>" prefix="<string>" is_default="<bool>"␣
→˓spice_netlist="<string>" verilog_netlist="<string>" dump_structural_verilog="<bool>">
<design_technology type="<string>"/>
<input_buffer exist="<string>" circuit_model_name="<string>"/>
<output_buffer exist="<string>" circuit_model_name="<string>"/>
<pass_gate_logic type="<string>" circuit_model_name="<string>"/>
<port type="<string>" prefix="<string>" lib_name="<string>" size="<int>" default_val="

→˓<int>" circuit_model_name="<string>" mode_select="<bool>" is_global="<bool>" is_set="
→˓<bool>" is_reset="<bool>" is_config_enable="<bool>"/>
<!-- more ports -->

</circuit_model>

<circuit_model type="<string>" name="<string>" prefix="<string>" is_default="<bool>"

spice_netlist="<string>" verilog_netlist="<string>" dump_structural_verilog="<bool>">

Specify the general attributes for a circuit model

• type="inv_buf|pass_gate|gate|mux|wire|chan_wire|sram|lut|ff|ccff|hard_logic|iopad"
Specify the type of circuit model. For the circuit models in the type of mux/wire/chan_wire/lut, FPGA-
Verilog/SPICE can auto-generate Verilog/SPICE netlists. For the rest, FPGA-Verilog/SPICE requires a
user-defined Verilog/SPICE netlist.

94 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

• name="<string>" Specify the name of this circuit model. The name should be unique and will be
used to create the Verilog/SPICE module in Verilog/SPICE netlists. Note that for a customized Ver-
ilog/SPICE netlist, the name defined here MUST be the name in the customized Verilog/SPICE netlist.
FPGA-Verilog/SPICE will check if the given name is conflicted with any reserved words.

• prefix="<string>" Specify the name of the <circuit_model> to shown in the auto-generated Ver-
ilog/SPICE netlists. The prefix can be the same as the name defined above. And again, the prefix should
be unique

• is_default="true|false" Specify this circuit model is the default one for those in the same types. If
a primitive module in VPR architecture is not linked to any circuit model by users, FPGA-Verilog/SPICE
will find the default circuit model defined in the same type.

• spice_netlist="<string>" Specify the path and file name of a customized SPICE netlist. For some
modules such as SRAMs, FFs, I/O pads, FPGA-SPICE does not support auto-generation of the transistor-
level sub-circuits because their circuit design is highly dependent on the technology nodes. These circuit
designs should be specified by users. For the other modules that can be auto-generated by FPGA-SPICE,
the user can also define a custom netlist.

• verilog_netlist="<string>" Specify the path and file name of a customized Verilog netlist. For some
modules such as SRAMs, FFs, I/O pads, FPGA-Verilog does not support auto-generation of the transistor-
level sub-circuits because their circuit design is highly dependent on the technology nodes. These circuit
designs should be specified by users. For the other modules that can be auto-generated by FPGA-Verilog,
the user can also define a custom netlist.

• dump_structural_verilog="true|false" When the value of this keyword is set to be true, Verilog
generator will output gate-level netlists of this module, instead of behavior-level. Gate-level netlists bring
more opportunities in layout-level optimization while behavior-level is more suitable for high-speed formal
verification and easier in debugging with HDL simulators.

Warning: prefix may be deprecated soon

Warning: Multiplexers cannot be user-defined.

Warning: For a circuit model type, only one circuit model is allowed to be set as default. If there is only one
circuit model defined in a type, it will be considered as the default automatically.

Note: If <spice_netlist> or <verilog_netlist> are not specified, FPGA-Verilog/SPICE auto-generates the
Verilog/SPICE netlists for multiplexers, wires, and LUTs.

Note: The user-defined netlists, such as LUTs, the decoding methodology should comply with the auto-generated
LUTs!!!

7.7. Circuit Library 95

OpenFPGA Documentation, Release 1.2.2022

7.7.2 Design Technology

<design_technology type="string"/>

Specify the design technology applied to a <circuit_model>

• type="cmos|rram" Specify the type of design technology of the <circuit_model>. Currently, OpenF-
PGA supports CMOS and RRAM technology for circuit models. CMOS technology can be applied to any
types of <circuit_model>, while RRAM technology is only applicable to multiplexers and SRAMs

Note: Each <circuit_model> may have different technologies

7.7.3 Device Technology

<device_technology device_model_name="<string>"/>

Specify the technology binding between a circuit model and a device model which is defined in the technology
library (see details in Technology library).

• device_model_name="<string>" Specify the name of device model that the circuit design will use. The
device model must be a valid one in the technology library.

Note: Technology binding is only required for primitive circuit models, which are inverters, buffers, logic gates, pass
gate logic, and is mandatory only when SPICE netlist generation is required.

7.7.4 Input and Output Buffers

<input_buffer exist="<string>" circuit_model_name="<string>"/>

• exist="true|false" Define the existence of the input buffer. Note that the existence is valid for all the
inputs.

• circuit_model_name="<string>" Specify the name of circuit model which is used to implement input
buffer, the type of specified circuit model should be inv_buf.

<output_buffer exist="<string>" circuit_model_name="<string>"/>

• exist="true|false" Define the existence of the output buffer. Note that the existence is valid for all the
outputs. Note that if users want only part of the inputs (or outputs) to be buffered, this is not supported
here. A solution can be building a user-defined Verilog/SPICE netlist.

• circuit_model_name="<string>" Specify the name of circuit model which is used to implement the
output buffer, the type of specified circuit model should be inv_buf.

Note: If users want only part of the inputs (or outputs) to be buffered, this is not supported here. A solution can be
building a user-defined Verilog/SPICE netlist.

96 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

7.7.5 Pass Gate Logic

<pass_gate_logic circuit_model_name="<string>"/>

• circuit_model_name="<string>" Specify the name of the circuit model which is used to implement
pass-gate logic, the type of specified circuit model should be pass_gate.

Note: pass-gate logic are used in building multiplexers and LUTs.

7.7.6 Circuit Port

A circuit model may consist of a number of ports. The port list is mandatory in any circuit_model and must be
consistent to any user-defined netlists.

<port type="<string>" prefix="<string>" lib_name="<string>" size="<int>"

default_val="<int>" circuit_model_name="<string>" mode_select="<bool>"

is_global="<bool>" is_set="<bool>" is_reset="<bool>"

is_config_enable="<bool>" is_io="<bool>" is_data_io="<bool>"/>

Define the attributes for a port of a circuit model.

• type="input|output|sram|clock" Specify the type of the port, i.e., the directionality and usage. For
programmable modules, such as multiplexers and LUTs, SRAM ports MUST be defined. For registers,
such as FFs and memory banks, clock ports MUST be defined.

Note: sram and clock ports are considered as inputs in terms of directionality

• prefix="<string>" the name of the port to appear in the autogenerated netlists. Each port will be shown
as <prefix>[i] in Verilog/SPICE netlists.

Note: if the circuit model is binded to a pb_type in VPR architecture, prefix must match the port name
defined in pb_type

• lib_name="<string>" the name of the port defined in standard cells or customized cells. If not specified,
this attribute will be the same as prefix.

Note: if the circuit model comes from a standard cell library, using lib_name is recommended. This is
because - the port names defined in pb_type are very diffrerent from the standard cells - the port sequence
is very different

• size="<int>" bandwidth of the port. MUST be larger than zero.

• default_val="<int>" Specify default logic value for a port, which is used as the initial logic value of
this port in testbench generation. Can be either 0 or 1. We assume each pin of this port has the same default
value.

• circuit_model_name="<string>" Specify the name of the circuit model which is connected to this
port.

Note: circuit_model_name is only valid when the type of this port is sram.

7.7. Circuit Library 97

OpenFPGA Documentation, Release 1.2.2022

• is_io="true|false" Specify if this port should be treated as an I/O port of an FPGA fabric. When this
is enabled, this port of each circuit model instanciated in FPGA will be added as an I/O of an FPGA.

Note: global output ports must be io ports

• is_data_io="true|false" Specify if this port should be treated as a mappable FPGA I/O port for users’
implementation. When this is enabled, I/Os of user’s implementation, e.g., .input and .output in .blif
netlist, can be mapped to the port through VPR.

Note: Any I/O model must have at least 1 port that is defined as data I/O!

• mode_select="true|false" Specify if this port controls the mode switching in a configurable logic
block. This is due to that a configurable logic block can operate in different modes, which is controlled by
SRAM bits.

Note: mode_select is only valid when the type of this port is sram.

• is_global="true|false" can be either true or false. Specify if this port is a global port, which will
be routed globally.

Note: For input ports, when multiple global input ports are defined with the same name, by default, these
global ports will be short-wired together. When io is turned on for this port, these global ports will be
independent in the FPGA fabric.

Note: For output ports, the global ports will be independent in the FPGA fabric

• is_set="true|false" Specify if this port controls a set signal. All the set ports are connected to global
set voltage stimuli in testbenches.

• is_reset="true|false" Specify if this port controls a reset signal. All the reset ports are connected to
a global reset voltage stimuli in testbenches.

• is_config_enable="true|false" Specify if this port controls a configuration-enable signal. Only
valid when is_global is true. This port is only enabled during FPGA configuration, and always dis-
abled during FPGA operation. All the config_enable ports are connected to global configuration-enable
voltage stimuli in testbenches.

Note: This attribute is used by testbench generators (see Testbench)

• In full testbench,

– There is a config_done signal, which stay at logic 0 during bitstream loading phase, and is pulled up
to logic 1 during operating phase

– When default_value="0", the port will be wired to a config_done signal.

– When default_value="1", the port will be wired to an inverted config_done signal.

• In preconfigured wrapper, the port will be set to the inversion of default_value, as the preconfigured
testbenches consider operating phase only.

98 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

Note: is_set, is_reset and is_config_enable are only valid when is_global is true.

Note: Different types of circuit_model have different XML syntax, with which users can highly customize their
circuit topologies. See refer to examples of :ref:circuit_model_example for more details.

Note: Note that we have a list of reserved port names, which indicate the usage of these ports when building FPGA
fabrics. Please do not use mem_out, mem_inv, bl, wl, blb, wlb, wlr, ccff_head and ccff_tail.

7.7.7 FPGA I/O Port

The circuit_model support not only highly customizable circuit-level modeling but also flexible I/O connection in
the FPGA fabric. Typically, circuit ports appear in the primitive modules of a FPGA fabric. However, it is also very
common that some circuit ports should be I/O of a FPGA fabric. Using syntax is_global and is_io, users can freely
define how these ports are connected as FPGA I/Os.

In principle, when is_global is set true, the port will appear as an FPGA I/O. The syntax is_io is applicable when
is_global is true. When is_io is true, the port from different instances will be treated as independent I/Os. When
is_io is false, the port from different instances will be treated as the same I/Os, which are short-wired.

To beef up, the following examples will explain how to use is_global and is_io to achieve different types of con-
nections to FPGA I/Os.

Global short-wired inputs

<port type="input" is_global="true" is_io="false"/>

The global inputs are short wired across different instances. These inputs are widely seen in FPGAs, such as clock
ports, which are shared between sequential elements.

Fig. 7.18 shows an example on how the global inputs are wired inside FPGA fabric.

Global short-wired inouts

<port type="inout" is_global="true" is_io="false"/>

The global inouts are short wired across different instances.

Fig. 7.19 shows an example on how the global inouts are wired inside FPGA fabric.

General-purpose inputs

<port type="input" is_global="true" is_io="true"/>

The general-purpose inputs are independent wired from different instances to separated FPGA I/Os. For example,
power-gating signals can be applied to each tile of a FPGA.

Fig. 7.20 shows an example on how the general-purpose inputs are wired inside FPGA fabric.

General-purpose I/O

<port type="inout" is_global="true" is_io="true"/>

7.7. Circuit Library 99

OpenFPGA Documentation, Release 1.2.2022

Fig. 7.18: Short-wired global inputs as an FPGA I/O

100 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

Fig. 7.19: Short-wired global inouts as an FPGA I/O

7.7. Circuit Library 101

OpenFPGA Documentation, Release 1.2.2022

Fig. 7.20: General-purpose inputs as separated FPGA I/Os

102 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

The general-purpose I/O are independent wired from different instances to separated FPGA I/Os. In practice, inout of
GPIO cell is typically wired like this.

Fig. 7.20 shows an example on how the general-purpose inouts are wired inside FPGA fabric.

Fig. 7.21: General-purpose inouts as separated FPGA I/Os

General-purpose outputs

<port type="output" is_global="true" is_io="true"/>

The general-purpose outputs are independent wired from different instances to separated FPGA outputs. In practice,
these outputs are typically spypads to probe internal signals of a FPGA.

Fig. 7.22 shows an example on how the general-purpose outputs are wired inside FPGA fabric.

Warning: The general-purpose inputs/inouts/outputs are not applicable to routing multiplexer outputs

7.7. Circuit Library 103

OpenFPGA Documentation, Release 1.2.2022

Fig. 7.22: General-purpose outputs as separated FPGA I/Os

104 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

7.8 Circuit model examples

As circuit model in different types have various special syntax. Here, we will provide detailed examples on each type
of circuit_model. These examples may be considered as template for users to craft their own circuit_model.

7.8.1 Inverters and Buffers

Template

<circuit_model type="inv_buf" name="<string>" prefix="<string>" netlist="<string>" is_
→˓default="<int>">
<design_technology type="cmos" topology="<string>" size="<int>" num_level="<int>" f_

→˓per_stage="<float>"/>
<port type="input" prefix="<string>" size="<int>"/>
<port type="output" prefix="<string>" size="<int>"/>

</circuit_model>

<design_technology type="cmos" topology="<string>" size="<int>" num_level="<int>" f_per_stage="<float>"/
>

• topology="inverter|buffer" Specify the type of this component, can be either an inverter or a buffer.

• size="<int>" Specify the driving strength of inverter/buffer. For a buffer, the size is the driving strength
of the inverter at the second level. Note that we consider a two-level structure for a buffer here.

• num_level="<int>" Define the number of levels of a tapered inverter/buffer. This is required when users
need an inverter or a buffer consisting of >2 stages

• f_per_stage="<float>" Define the ratio of driving strength between the levels of a tapered in-
verter/buffer. Default value is 4.

Inverter 1x Example

Fig. 7.23 is the inverter symbol depicted in this example.

Fig. 7.23: Classical inverter 1x symbol.

The XML code describing this inverter is:

<circuit_model type="inv_buf" name="inv1x" prefix="inv1x">
<design_technology type="cmos" topology="inverter" size="1"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>

</circuit_model>

7.8. Circuit model examples 105

OpenFPGA Documentation, Release 1.2.2022

This example shows:

• The topology chosen as inverter

• Size of 1 for the output strength

• The tapered parameter is not declared and is false by default

Power-gated Inverter 1x example

The XML code describing an inverter which can be power-gated by the control signals EN and ENB :

<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1">
<design_technology type="cmos" topology="inverter" size="3" power_gated="true"/>
<port type="input" prefix="in" size="1" lib_name="I"/>
<port type="input" prefix="EN" size="1" lib_name="EN" is_global="true" default_val="0"␣

→˓is_config_enable="true"/>
<port type="input" prefix="ENB" size="1" lib_name="ENB" is_global="true" default_val="1

→˓" is_config_enable="true"/>
<port type="output" prefix="out" size="1" lib_name="Z"/>

</circuit_model>

Note: For power-gated inverters: all the control signals must be set as config_enable so that the testbench generation
will generate testing waveforms. If the power-gated inverters are auto-generated, all the config_enable signals must
be global signals as well. If the power-gated inverters come from user-defined netlists, restrictions on global signals
are free.

Buffer 2x example

Fig. 7.24 is the buffer symbol depicted in this example.

Fig. 7.24: Buffer made by two inverter, with an output strength of 2.

The XML code describing this buffer is:

<circuit_model type="inv_buf" name="buf2" prefix="buf2">
<design_technology type="cmos" topology="buffer" size="2"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>

</circuit_model>

This example shows:
• The topology chosen as buffer

• Size of 2 for the output strength

106 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

• The tapered parameter is not declared and is false by default

Power-gated Buffer 4x example

The XML code describing a buffer which can be power-gated by the control signals EN and ENB :

<circuit_model type="inv_buf" name="buf_4x" prefix="buf_4x">
<design_technology type="cmos" topology="buffer" size="4" power_gated="true"/>
<port type="input" prefix="in" size="1" lib_name="I"/>
<port type="input" prefix="EN" size="1" lib_name="EN" is_global="true" default_val="0"␣

→˓is_config_enable="true"/>
<port type="input" prefix="ENB" size="1" lib_name="ENB" is_global="true" default_val="1

→˓" is_config_enable="true"/>
<port type="output" prefix="out" size="1" lib_name="Z"/>

</circuit_model>

Note: For power-gated buffers: all the control signals must be set as config_enable so that the testbench generation
will generate testing waveforms. If the power-gated buffers are auto-generated, all the config_enable signals must
be global signals as well. If the power-gated buffers come from user-defined netlists, restrictions on global signals
are free.

Tapered inverter 16x example

Fig. 7.25 is the tapered inverter symbol depicted this example.

Fig. 7.25: Inverter with high output strength made by 3 stage of inverter.

The XML code describing this inverter is:

<circuit_model type="inv_buf" name="tapdrive4" prefix="tapdrive4">
<design_technology type="cmos" topology="inverter" size="1" num_level="3" f_per_stage=

→˓"4"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>

</circuit_model>

This example shows:
• The topology chosen as inverter

• Size of 1 for the first stage output strength

• The number of stage is set to 3 by

• f_per_stage is set to 4. As a result, 2nd stage output strength is 4x, and the 3rd stage output strength is 16x.

7.8. Circuit model examples 107

OpenFPGA Documentation, Release 1.2.2022

Tapered buffer 64x example

The XML code describing a 4-stage buffer is:

<circuit_model type="inv_buf" name="tapbuf_16x" prefix="tapbuf_16x">
<design_technology type="cmos" topology="buffer" size="1" num_level="4" f_per_stage="4

→˓"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>

</circuit_model>

This example shows:
• The topology chosen as buffer

• Size of 1 for the first stage output strength

• The number of stage is set to 4 by

• f_per_stage is set to 2. As a result, 2nd stage output strength is 4*, the 3rd stage output strength is 16*, and
the 4th stage output strength is 64x.

7.8.2 Pass-gate Logic

Template

<circuit_model type="pass_gate" name="<string>" prefix="<string>" netlist="<string>" is_
→˓default="<int>">
<design_technology type="cmos" topology="<string>" nmos_size="<float>" pmos_size="

→˓<float>"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="<string>" size="<int>"/>
<port type="output" prefix="<string>" size="<int>"/>

</circuit_model>

Note: The port sequence really matters! And all the input ports must have an input size of 1!

• The first input must be the datapath input, e.g., in.

• The second input must be the select input, e.g., sel.

• The third input (if applicable) must be the inverted select input, e.g., selb.

Warning: Please do NOT add input and output buffers to pass-gate logic.

<design_technology type="cmos" topology="<string>" nmos_size="<float>" pmos_size="<float>"/
>

• topology="transmission_gate|pass_transistor" Specify the circuit topology for the pass-gate
logic. A transmission gate consists of a n-type transistor and a p-type transistor. The pass transistor consists
of only a n-type transistor.

108 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

• nmos_size="<float>" the size of n-type transistor in a transmission gate or pass_transistor, expressed in
terms of the minimum width min_width defined in the transistor model in Technology library.

• pmos_size="<float>" the size of p-type transistor in a transmission gate, expressed in terms of the
minimum width min_width defined in the transistor model in Technology library.

Note: nmos_size and pmos_size are required for FPGA-SPICE

Transmission-gate Example

Fig. 7.26 is the pass-gate symbol depicted in this example.

Fig. 7.26: Pass-gate made by a p-type and a n-type transistors.

The XML code describing this pass-gate is:

<circuit_model type="pass_gate" name="tgate" prefix="tgate">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2

→˓"/>
<port type="input" prefix="in" size="1"/>
<port type="input" prefix="sram" size="1"/>
<port type="input" prefix="sramb" size="1"/>
<port type="output" prefix="out" size="1"/>

</circuit_model>

This example shows:
• A transmission_gate built with a n-type transistor in the size of 1 and a p-type transistor in the size of

2.

• 3 inputs considered, 1 for datapath signal and 2 to turn on/off the transistors gates

Pass-transistor Example

Fig. 7.27 is the pass-gate symbol depicted in this example.

Fig. 7.27: Pass-gate made by a nmos transistor.

The XML code describing this pass-gate is:

7.8. Circuit model examples 109

OpenFPGA Documentation, Release 1.2.2022

<circuit_model type="pass_gate" name="t_pass" prefix="t_pass">
<design_technology type="cmos" topology="pass_transistor"/>
<port type="input" prefix="in" size="1"/>
<port type="input" prefix="sram" size="1"/>
<port type="output" prefix="out" size="1"/>

</circuit_model>

This example shows:
• A pass_transistor build with a n-type transistor in the size of 1

• 2 inputs considered, 1 for datapath signal and 1 to turn on/off the transistor gate

7.8.3 SRAMs

Note: OpenFPGA does not auto-generate any netlist for SRAM cells. Users should define the HDL modeling in
external netlists and ensure consistency to physical designs.

Template

<circuit_model type="sram" name="<string>" prefix="<string>" verilog_netlist="<string>"␣
→˓spice_netlist="<string>"/>
<design_technology type="cmos"/>
<input_buffer exist="<string>" circuit_model_name="<string>"/>
<output_buffer exist="<string>" circuit_model_name="<string>"/>
<port type="input" prefix="<string>" size="<int>"/>
<port type="output" prefix="<string>" size="<int>"/>

</circuit_model>

Note: The circuit designs of SRAMs are highly dependent on the technology node and well optimized by engineers.
Therefore, FPGA-Verilog/SPICE requires users to provide their customized SRAM Verilog/SPICE/Verilog netlists. A
sample Verilog/SPICE netlist of SRAM can be found in the directory SpiceNetlists in the released package. FPGA-
Verilog/SPICE assumes that all the LUTs and MUXes employ the SRAM circuit design. Therefore, currently only one
SRAM type is allowed to be defined.

Note: The information of input and output buffer should be clearly specified according to the customized Ver-
ilog/SPICE netlist! The existence of input/output buffers will influence the decision in creating testbenches, which
may leads to larger errors in power analysis.

110 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

SRAM with BL/WL

Fig. 7.28: An example of a SRAM with Bit-Line (BL) and Word-Line (WL) control signals

The following XML codes describes the SRAM cell shown in Fig. 7.28.

<circuit_model type="sram" name="sram_blwl" prefix="sram_blwl" verilog_netlist="sram.v"␣
→˓spice_netlist="sram.sp"/>
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="bl" prefix="bl" size="1"/>
<port type="blb" prefix="blb" size="1"/>
<port type="wl" prefix="wl" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="output" prefix="outb" size="1"/>

</circuit_model>

Note: OpenFPGA always assume that a WL port should be the write/read enable signal, while a BL port is the data
input.

Note: When the memory_bank type of configuration procotol is specified, SRAM modules should have a BL and a
WL.

7.8. Circuit model examples 111

OpenFPGA Documentation, Release 1.2.2022

SRAM with BL/WL/WLR

Fig. 7.29: An example of a SRAM with Bit-Line (BL), Word-Line (WL) and WL read control signals

The following XML codes describes the SRAM cell shown in Fig. 7.29.

<circuit_model type="sram" name="sram_blwlr" prefix="sram_blwlr" verilog_netlist="sram.v
→˓" spice_netlist="sram.sp"/>
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="bl" prefix="bl" size="1"/>
<port type="wl" prefix="wl" size="1"/>
<port type="wlr" prefix="wlr" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="output" prefix="outb" size="1"/>

</circuit_model>

Note: OpenFPGA always assume that a WL port should be the write enable signal, a WLR port should be the read enable
signal, while a BL port is the data input.

Note: When the memory_bank type of configuration procotol is specified, SRAM modules should have a BL and a
WL. WLR is optional

Configurable Latch

Fig. 7.30: An example of a SRAM-based configurable latch with Bit-Line (BL) and Word-Line (WL) control signals

The following XML codes describes the configurable latch shown in Fig. 7.30.

<circuit_model type="sram" name="config_latch" prefix="config_latch" verilog_netlist=
→˓"sram.v" spice_netlist="sram.sp"/>
<design_technology type="cmos"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="clock" prefix="clk" size="1"/>
<port type="bl" prefix="bl" size="1"/>
<port type="wl" prefix="wl" size="1"/>
<port type="output" prefix="out" size="1"/>

(continues on next page)

112 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

<port type="output" prefix="outb" size="1"/>
</circuit_model>

Note: OpenFPGA always assume that a WL port should be the write/read enable signal, while a BL port is the data
input.

Note: When the frame_based type of configuration procotol is specified, the configurable latch or a SRAM with BL
and WL should be specified.

7.8.4 Logic gates

The circuit model in the type of gate aims to support direct mapping to standard cells or customized cells provided by
technology vendors or users.

Template

<circuit_model type="gate" name="<string>" prefix="<string>" spice_netlist="<string>"␣
→˓verilog_netlist="<string>"/>
<design_technology type="cmos" topology="<string>"/>
<input_buffer exist="<string>" circuit_model_name="<string>"/>
<output_buffer exist="<string>" circuit_model_name="<string>"/>
<port type="input" prefix="<string>" lib_name="<string>" size="<int>"/>
<port type="output" prefix="<string>" lib_name="<string>" size="<int>"/>

</circuit_model>

<design_technology type="cmos" topology="<string>"/>

• topology="AND|OR|MUX2" Specify the logic functionality of a gate. As for standard cells, the size of
each port is limited to 1. Currently, only 2-input and single-output logic gates are supported.

Note: The port sequence really matters for MUX2 logic gates!

• The first two inputs must be the datapath inputs, e.g., in0 and in1.

• The third input must be the select input, e.g., sel.

2-input AND Gate

<circuit_model type="gate" name="AND2" prefix="AND2" is_default="true">
<design_technology type="cmos" topology="AND"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="a" size="1"/>
<port type="input" prefix="b" size="1"/>
<port type="output" prefix="out" size="1"/>

(continues on next page)

7.8. Circuit model examples 113

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

<delay_matrix type="rise" in_port="a b" out_port="out">
10e-12 8e-12

</delay_matrix>
<delay_matrix type="fall" in_port="a b" out_port="out">
10e-12 7e-12

</delay_matrix>
</circuit_model>

This example shows:
• A 2-input AND gate without any input and output buffers

• Propagation delay from input a to out is 10ps in rising edge and and 8ps in falling edge

• Propagation delay from input b to out is 10ps in rising edge and 7ps in falling edge

2-input OR Gate

<circuit_model type="gate" name="OR2" prefix="OR2" is_default="true">
<design_technology type="cmos" topology="OR"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="a" size="1"/>
<port type="input" prefix="b" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="a b" out_port="out">
10e-12 8e-12

</delay_matrix>
<delay_matrix type="fall" in_port="a b" out_port="out">
10e-12 7e-12

</delay_matrix>
</circuit_model>

This example shows:
• A 2-input OR gate without any input and output buffers

• Propagation delay from input a to out is 10ps in rising edge and and 8ps in falling edge

• Propagation delay from input b to out is 10ps in rising edge and 7ps in falling edge

MUX2 Gate

<circuit_model type="gate" name="MUX2" prefix="MUX2" is_default="true" verilog_netlist=
→˓"sc_mux.v">
<design_technology type="cmos" topology="MUX2"/>
<input_buffer exist="false"/>
<output_buffer exist="false"/>
<port type="input" prefix="in0" lib_name="B" size="1"/>
<port type="input" prefix="in1" lib_name="A" size="1"/>
<port type="input" prefix="sel" lib_name="S" size="1"/>
<port type="output" prefix="out" lib_name="Y" size="1"/>

</circuit_model>

114 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

This example shows:
• A 2-input MUX gate with two inputs in0 and in1, a select port sel and an output port out

• The Verilog of MUX2 gate is provided by the user in the netlist sc_mux.v

• The use of lib_name to bind to a Verilog module with different port names.

• When binding to the Verilog module, the inputs will be swapped. In other words, in0 of the circuit model
will be wired to the input B of the MUX2 cell, while in1 of the circuit model will be wired to the input A
of the MUX2 cell.

Note: OpenFPGA requires a fixed truth table for the MUX2 gate. When the select signal sel is enabled, the first input,
i.e., in0, will be propagated to the output, i.e., out. If your standard cell provider does not offer the exact truth table,
you can simply swap the inputs as shown in the example.

7.8.5 Multiplexers

Template

<circuit_model type="mux" name="<string>" prefix="<string>">
<design_technology type="<string>" structure="<string>" num_level="<int>" add_const_

→˓input="<bool>" const_input_val="<int>" local_encoder="<bool>"/>
<input_buffer exist="<string>" circuit_model_name="<string>"/>
<output_buffer exist="<string>" circuit_model_name="<string>"/>
<pass_gate_logic type="<string>" circuit_model_name="<string>"/>
<port type="input" prefix="<string>" size="<int>"/>
<port type="output" prefix="<string>" size="<int>"/>
<port type="sram" prefix="<string>" size="<int>"/>

</circuit_model>

Note: user-defined Verilog/SPICE netlists are not currently supported for multiplexers.

<design_technology type="<string>" structure="<string>" num_level="<int>" add_const_input="<bool>" const_input_val="<int>" local_encoder="<bool>"/
>

• structure="tree|multi_level|one_level" Specify the multiplexer structure for a multiplexer. The
structure option is only valid for SRAM-based multiplexers. For RRAM-based multiplexers, currently we
only support the one_level structure

• num_level="<int>" Specify the number of levels when multi_level structure is selected.

• add_const_input="true|false" Specify if an extra input should be added to the multiplexer circuits.
For example, an 4-input multiplexer will be turned to a 5-input multiplexer. The extra input will be wired
to a constant value, which can be specified through the XML syntax const_input_val.

Note: Adding an extra constant input will help reducing the leakage power of FPGA and parasitic signal
activities, with a limited area overhead.

• const_input_val="0|1" Specify the constant value, to which the extra input will be connected. By
default it is 0. This syntax is only valid when the add_const_input is set to true.

7.8. Circuit model examples 115

OpenFPGA Documentation, Release 1.2.2022

• local_encoder="true|false". Specify if a local encoder should be added to the multiplexer circuits.
The local encoder will interface the SRAM inputs of multiplexing structure and SRAMs. It can encode
the one-hot codes (that drive the select port of multiplexing structure) to a binary code. For example, 8-bit
00000001 will be encoded to 3-bit 000. This will help reduce the number of SRAM cells used in FPGAs
as well as configuration time (especially for scan-chain configuration protocols). But it may cost an area
overhead.

Note: Local encoders are only applicable for one-level and multi-level multiplexers. Tree-like multiplexers
are already encoded in their nature.

Note: A multiplexer should have only three types of ports, input, output and sram, which are all mandatory.

Note: For tree-like multiplexers, they can be built with standard cell MUX2. To enable this, users should define a
circuit_model, which describes a 2-input multiplexer (See details and examples in how to define a logic gate using
circuit_model. In this case, the circuit_model_name in the pass_gate_logic should be the name of MUX2
circuit_model.

Note: When multiplexers are not provided by users, the size of ports do not have to be consistent with actual numbers
in the architecture.

One-level Multiplexer

Fig. 7.31 illustrates an example of multiplexer modelling, which consists of input/output buffers and a transmission-
gate-based tree structure.

Fig. 7.31: An example of a one level multiplexer with transistor-level design parameters

The code describing this Multiplexer is:

<circuit_model type="mux" name="mux_1level" prefix="mux_1level">
<design_technology type="cmos" structure="one_level"/>
<input_buffer exist="on" circuit_model_name="inv1x"/>

(continues on next page)

116 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

<output_buffer exist="on" circuit_model_name="tapbuf4"/>
<pass_gate_logic circuit_model_name="tgate"/>
<port type="input" prefix="in" size="4"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="4"/>

</circuit_model>

This example shows:
• A one-level 4-input CMOS multiplexer

• All the inputs will be buffered using the circuit model inv1x

• All the outputs will be buffered using the circuit model tapbuf4

• The multiplexer will be built by transmission gate using the circuit model tgate

• The multiplexer will have 4 inputs and 4 SRAMs to control which datapath to propagate

Tree-like Multiplexer

Fig. 7.32 illustrates an example of multiplexer modelling, which consists of input/output buffers and a transmission-
gate-based tree structure.

If we arbitrarily fix the number of Mux entries at 4, the following code could illustrate (a):

<circuit_model type="mux" name="mux_tree" prefix="mux_tree">
<design_technology type="cmos" structure="tree"/>
<input_buffer exist="on" circuit_model_name="inv1x"/>
<output_buffer exist="on" circuit_model_name="tapdrive4"/>
<pass_gate_logic circuit_model_name="tgate"/>
<port type="input" prefix="in" size="4"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="3"/>

</circuit_model>

This example shows:
• A tree-like 4-input CMOS multiplexer

• All the inputs will be buffered using the circuit model inv1x

• All the outputs will be buffered using the circuit model tapbuf4

• The multiplexer will be built by transmission gate using the circuit model tgate

• The multiplexer will have 4 inputs and 3 SRAMs to control which datapath to propagate

7.8. Circuit model examples 117

OpenFPGA Documentation, Release 1.2.2022

Fig. 7.32: An example of a tree-like multiplexer with transistor-level design parameters

118 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

Standard Cell Multiplexer

<circuit_model type="mux" name="mux_stdcell" prefix="mux_stdcell">
<design_technology type="cmos" structure="tree"/>
<input_buffer exist="on" circuit_model_name="inv1x"/>
<output_buffer exist="on" circuit_model_name="tapdrive4"/>
<pass_gate_logic circuit_model_name="MUX2"/>
<port type="input" prefix="in" size="4"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="3"/>

</circuit_model>

This example shows:
• A tree-like 4-input CMOS multiplexer built by the standard cell MUX2

• All the inputs will be buffered using the circuit model inv1x

• All the outputs will be buffered using the circuit model tapbuf4

• The multiplexer will have 4 inputs and 3 SRAMs to control which datapath to propagate

Multi-level Multiplexer

<circuit_model type="mux" name="mux_2level" prefix="mux_stdcell">
<design_technology type="cmos" structure="multi_level" num_level="2"/>
<input_buffer exist="on" circuit_model_name="inv1x"/>
<output_buffer exist="on" circuit_model_name="tapdrive4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="16"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="8"/>

</circuit_model>

This example shows:
• A two-level 16-input CMOS multiplexer built by the transmission gate TGATE

• All the inputs will be buffered using the circuit model inv1x

• All the outputs will be buffered using the circuit model tapbuf4

• The multiplexer will have 16 inputs and 8 SRAMs to control which datapath to propagate

Multiplexer with Local Encoder

<circuit_model type="mux" name="mux_2level" prefix="mux_stdcell">
<design_technology type="cmos" structure="multi_level" num_level="2" local_encoder=

→˓"true"/>
<input_buffer exist="on" circuit_model_name="inv1x"/>
<output_buffer exist="on" circuit_model_name="tapdrive4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="16"/>
<port type="output" prefix="out" size="1"/>

(continues on next page)

7.8. Circuit model examples 119

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

<port type="sram" prefix="sram" size="4"/>
</circuit_model>

This example shows:
• A two-level 16-input CMOS multiplexer built by the transmission gate TGATE

• All the inputs will be buffered using the circuit model inv1x

• All the outputs will be buffered using the circuit model tapbuf4

• The multiplexer will have 16 inputs and 4 SRAMs to control which datapath to propagate

• Two local encoders are generated between the SRAMs and multiplexing structure to reduce the number of
configurable memories required.

Multiplexer with Constant Input

<circuit_model type="mux" name="mux_2level" prefix="mux_stdcell">
<design_technology type="cmos" structure="multi_level" num_level="2" add_const_input=

→˓"true" const_input_val="1"/>
<input_buffer exist="on" circuit_model_name="inv1x"/>
<output_buffer exist="on" circuit_model_name="tapdrive4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="14"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="8"/>

</circuit_model>

This example shows:
• A two-level 16-input CMOS multiplexer built by the transmission gate TGATE

• All the inputs will be buffered using the circuit model inv1x

• All the outputs will be buffered using the circuit model tapbuf4

• The multiplexer will have 15 inputs and 8 SRAMs to control which datapath to propagate

• An constant input toggled at logic ‘1’ is added in addition to the 14 regular inputs

7.8.6 Look-Up Tables

Template

<circuit_model type="lut" name="<string>" prefix="<string>" spice_netlist="<string>"␣
→˓verilog_netlist="<string>"/>
<design_technology type="cmos" fracturable_lut="<bool>"/>
<input_buffer exist="<string>" circuit_model_name="<string>"/>
<output_buffer exist="<string>" circuit_model_name="<string>"/>
<lut_input_buffer exist="<string>" circuit_model_name="<string>"/>
<lut_input_inverter exist="<string>" circuit_model_name="<string>"/>
<lut_intermediate_buffer exist="<string>" circuit_model_name="<string>" location_map="

→˓<string>"/>
<pass_gate_logic type="<string>" circuit_model_name="<string>"/>

(continues on next page)

120 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

<port type="input" prefix="<string>" size="<int>" tri_state_map="<string>" circuit_
→˓model_name="<string>" is_harden_lut_port="<bool>"/>
<port type="output" prefix="<string>" size="<int>" lut_frac_level="<int>" lut_output_

→˓mask="<int>" is_harden_lut_port="<bool>"/>
<port type="sram" prefix="<string>" size="<int>" mode_select="<bool>" circuit_model_

→˓name="<string>" default_val="<int>"/>
</circuit_model>

Note: The Verilog/SPICE netlists of LUT can be auto-generated or customized. The auto-generated LUTs are based
on a tree-like multiplexer, whose gates of the transistors are used as the inputs of LUTs and the drains/sources of the
transistors are used for configurable memories (SRAMs). The LUT provided in customized Verilog/SPICE netlist
should have the same decoding methodology as the traditional LUT.

<lut_input_buffer exist="<string>" circuit_model_name="<string>"/>

Define transistor-level description for the buffer for the inputs of a LUT (gates of the internal multiplexer).

• exist="true|false" Specify if the input buffer should exist for LUT inputs

• circuit_model_name="<string>" Specify the circuit_model that will be used to build the input
buffers

Note: In the context of LUT, input_buffer corresponds to the buffer for the datapath inputs of multiplexers inside
a LUT. lut_input_buffer corresponds to the buffer at the inputs of a LUT

<lut_input_inverter exist="<string>" circuit_model_name="<string>"/>

Define transistor-level description for the inverter for the inputs of a LUT (gates of the internal multiplexer).

• exist="true|false" Specify if the input buffer should exist for LUT inputs

• circuit_model_name="<string>" Specify the circuit_model that will be used to build the input
inverters

<lut_intermediate_buffer exist="<string>" circuit_model_name="<string>" location_map="<string>"/
>

Define transistor-level description for the buffer locating at intermediate stages of internal multiplexer of a LUT.

• exist="true|false" Specify if the input buffer should exist at intermediate stages

• circuit_model_name="<string>" Specify the circuit_model that will be used to build these buffers

• location_map="[1|-]" Customize the location of buffers in intermediate stages. Users can define an
integer array consisting of ‘1’ and ‘-’. Take the example in Fig. 7.33, -1- indicates buffer inseration to the
second stage of the LUT multiplexer tree, considering a 3-input LUT.

Fig. 7.33: An example of adding intermediate buffers to a 3-input Look-Up Table (LUT).

Note: For a LUT, three types of ports (input, output and sram) should be defined. If the user provides an customized
Verilog/SPICE netlist, the bandwidth of ports should be defined to the same as the Verilog/SPICE netlist. To support
customizable LUTs, each type of port contain special keywords.

7.8. Circuit model examples 121

OpenFPGA Documentation, Release 1.2.2022

<port type="input" prefix="<string>" size="<int>" tri_state_map="<string>" circuit_model_name="<string>" is_harden_lut_port="<bool>"/
>

• tri_state_map="[-|1]" Customize which inputs are fixed to constant values when the LUT is in frac-
turable modes. For example, tri_state_map="----11" indicates that the last two inputs will be fixed to
be logic ‘1’ when a 6-input LUT is in fracturable modes.

• circuit_model_name="<string>" Specify the circuit model to build logic gates in order to tri-state the
inputs in fracturable LUT modes. It is required to use an AND gate to force logic ‘0’ or an OR gate to force
logic ‘1’ for the input ports.

• is_harden_lut_port="[true|false]" Specify if the input drives a harden logic inside a LUT. A
harden input is supposed NOT to drive any multiplexer input (the internal multiplexer of LUT). As a result,
such inputs are not considered to implement any truth table mapped to the LUT. If enabled, the input will
NOT be considered for wiring to internal multiplexers as well as bitstream generation. By default, an input
port is treated NOT to be a harden LUT port.

<port type="output" prefix="<string>" size="<int>" lut_frac_level="<int>" lut_output_mask="<int>" is_harden_lut_port="<bool>"/
>

• lut_frac_level="<int>" Specify the level in LUT multiplexer tree where the output port are wired to.
For example, lut_frac_level="4" in a fracturable LUT6 means that the output are potentially wired to
the 4th stage of a LUT multiplexer and it is an output of a LUT4.

• lut_output_mask="<int>" Describe which fracturable outputs are used. For instance, in a 6-LUT, there
are potentially four LUT4 outputs can be wired out. lut_output_mask="0,2" indicates that only the first
and the thrid LUT4 outputs will be used in fracturable mode.

• is_harden_lut_port="[true|false]" Specify if the output is driven by a harden logic inside a LUT.
A harden input is supposed NOT to be driven by any multiplexer output (the internal multiplexer of LUT).
As a result, such outputs are not considered to implement any truth table mapped to the LUT. If enabled,
the output will NOT be considered for wiring to internal multiplexers as well as bitstream generation. By
default, an output port is treated NOT to be a harden LUT port.

Note: The size of the output port should be consistent to the length of lut_output_mask.

<port type="sram" prefix="<string>" size="<int>" mode_select="<bool>" circuit_model_name="<string>" default_val="<int>"/
>

• mode_select="true|false" Specify if this port is used to switch the LUT between different operat-
ing modes, the SRAM bits of a fracturable LUT consists of two parts: configuration memory and mode
selecting.

• circuit_model_name="<string>" Specify the circuit model to be drive the SRAM port. Typically, the
circuit model should be in the type of ccff or sram.

• default_val="0|1" Specify the default value for the SRAM port. The default value will be used in
generating testbenches for unused LUTs

Note: The size of a mode-selection SRAM port should be consistent to the number of ‘1s’ or ‘0s’ in the
tri_state_map.

122 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

Single-Output LUT

Fig. 7.34 illustrates an example of LUT modeling, which consists of input/output buffers and a transmission-gate-based
tree structure.

Fig. 7.34: An example of a single-output 3-input LUT.

The code describing this LUT is:

<circuit_model type="lut" name="lut3" prefix="lut3">
<input_buffer exist="on" circuit_model="inv1x"/>
<output_buffer exist="on" circuit_model_name="inv1x"/>
<lut_input_buffer exist="on" circuit_model_name="buf2"/>
<lut_input_inverter exist="on" circuit_model_name="inv1x"/>
<pass_gate_logic circuit_model_name="tgate"/>
<port type="input" prefix="in" size="3"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="8"/>

</circuit_model>

This example shows:
• A 3-input LUT which is configurable by 8 SRAM cells.

• The multiplexer inside LUT will be built with transmission gate using circuit model inv1x

• There are no internal buffered inserted to any intermediate stage of a LUT

Standard Fracturable LUT

Fig. 7.35 illustrates a typical example of 3-input fracturable LUT modeling, which consists of input/output buffers and
a transmission-gate-based tree structure.

Fig. 7.35: An example of a fracturable 3-input LUT.

The code describing this LUT is:

<circuit_model type="lut" name="frac_lut3" prefix="frac_lut3" dump_structural_verilog=
→˓"true">
<design_technology type="cmos" fracturable_lut="true"/>
<input_buffer exist="true" circuit_model_name="inv1x"/>
<output_buffer exist="true" circuit_model_name="inv1x"/>
<lut_input_inverter exist="true" circuit_model_name="inv1x"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<pass_gate_logic circuit_model_name="tgate"/>
<port type="input" prefix="in" size="3" tri_state_map="--1" circuit_model_name="OR2"/>
<port type="output" prefix="lut2_out" size="1" lut_frac_level="3" lut_output_mask="0"/>
<port type="output" prefix="lut3_out" size="1" lut_output_mask="0"/>
<port type="sram" prefix="sram" size="8"/>
<port type="sram" prefix="mode" size="1" mode_select="true" circuit_model_name="ccff"␣

→˓default_val="0"/>
</circuit_model>

7.8. Circuit model examples 123

OpenFPGA Documentation, Release 1.2.2022

This example shows:
• Fracturable 3-input LUT which is configurable by 9 SRAM cells.

• There is a SRAM cell to switch the operating mode of this LUT, configured by a configuration-chain flip-
flop ccff

• The last input in[2] of LUT will be tri-stated in dual-LUT2 mode.

• An 2-input OR gate will be wired to the last input in[2] to tri-state the input. The mode-select SRAM will
be wired to an input of the OR gate. It means that when the mode-selection bit is ‘0’, the LUT will operate
in dual-LUT3 mode.

• There will be two outputs wired to the 2th stage of routing multiplexer (the outputs of dual 2-input LUTs)

• By default, the mode-selection configuration bit will be ‘0’, indicating that by default the LUT will operate
in dual-LUT2 mode.

Fig. 7.36 illustrates the detailed schematic of a standard fracturable 6-input LUT, where the 5th and 6th inputs can be
pull up/down to a fixed logic value to enable LUT4 and LUT5 outputs.

Fig. 7.36: Detailed schematic of a standard fracturable 6-input LUT.

The code describing this LUT is:

<circuit_model type="lut" name="frac_lut6" prefix="frac_lut6" dump_structural_verilog=
→˓"true">
<design_technology type="cmos" fracturable_lut="true"/>
<input_buffer exist="true" circuit_model_name="inv1x"/>
<output_buffer exist="true" circuit_model_name="inv1x"/>
<lut_input_inverter exist="true" circuit_model_name="inv1x"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<pass_gate_logic circuit_model_name="tgate"/>
<port type="input" prefix="in" size="6" tri_state_map="----11" circuit_model_name="OR2

→˓"/>
<port type="output" prefix="lut4_out" size="2" lut_frac_level="4" lut_output_mask="0,2

→˓"/>
<port type="output" prefix="lut5_out" size="2" lut_frac_level="5" lut_output_mask="0,1

→˓"/>
<port type="output" prefix="lut6_out" size="1" lut_output_mask="0"/>
<port type="sram" prefix="sram" size="64"/>
<port type="sram" prefix="mode" size="2" mode_select="true" circuit_model_name="ccff"␣

→˓default_val="1"/>
</circuit_model>

This example shows:
• Fracturable 6-input LUT which is configurable by 66 SRAM cells.

• There are two SRAM cells to switch the operating mode of this LUT, configured by two configuration-chain
flip-flops ccff

• The inputs in[4] and in[5] of LUT will be tri-stated in dual-LUT4 and dual-LUT5 modes respectively.

• An 2-input OR gate will be wired to the inputs in[4] and in[5] to tri-state them. The mode-select SRAM
will be wired to an input of the OR gate.

• There will be two outputs wired to the 4th stage of routing multiplexer (the outputs of dual 4-input LUTs)

• There will be two outputs wired to the 5th stage of routing multiplexer (the outputs of dual 5-input LUTs)

124 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

• By default, the mode-selection configuration bit will be ‘11’, indicating that by default the LUT will operate
in dual-LUT4 mode.

Native Fracturable LUT

Fig. 7.37 illustrates the detailed schematic of a native fracturable 6-input LUT, where LUT4, LUT5 and LUT6 outputs
are always active and there are no tri-state buffers.

Fig. 7.37: Detailed schematic of a native fracturable 6-input LUT.

The code describing this LUT is:

<circuit_model type="lut" name="frac_lut6" prefix="frac_lut6" dump_structural_verilog=
→˓"true">
<design_technology type="cmos" fracturable_lut="true"/>
<input_buffer exist="true" circuit_model_name="inv1x"/>
<output_buffer exist="true" circuit_model_name="inv1x"/>
<lut_input_inverter exist="true" circuit_model_name="inv1x"/>
<lut_input_buffer exist="true" circuit_model_name="buf4"/>
<pass_gate_logic circuit_model_name="tgate"/>
<port type="input" prefix="in" size="6"/>
<port type="output" prefix="lut4_out" size="2" lut_frac_level="4" lut_output_mask="0,2

→˓"/>
<port type="output" prefix="lut5_out" size="2" lut_frac_level="5" lut_output_mask="0,1

→˓"/>
<port type="output" prefix="lut6_out" size="1" lut_output_mask="0"/>
<port type="sram" prefix="sram" size="64"/>

</circuit_model>

This example shows:
• Fracturable 6-input LUT which is configurable by 64 SRAM cells.

• There will be two outputs wired to the 4th stage of routing multiplexer (the outputs of dual 4-input LUTs)

• There will be two outputs wired to the 5th stage of routing multiplexer (the outputs of dual 5-input LUTs)

LUT with Harden Logic

Fig. 7.38 illustrates the detailed schematic of a fracturable 4-input LUT coupled with carry logic gates. For fracturable
LUT schematic, please refer to Fig. 7.36. This feature allows users to fully customize their LUT circuit implementation
while being compatible with OpenFPGA’s bitstream generator when mapping truth tables to the LUTs.

Warning: OpenFPGA does NOT support netlist autogeneration for the LUT with harden logic. Users should
build their own netlist and use verilog_netlist syntax of Circuit Library to include it.

Fig. 7.38: Detailed schematic of a fracturable 4-input LUT with embedded carry logic.

The code describing this LUT is:

7.8. Circuit model examples 125

OpenFPGA Documentation, Release 1.2.2022

<circuit_model type="lut" name="frac_lut4_arith" prefix="frac_lut4_arith" dump_
→˓structural_verilog="true" verilog_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_
→˓cell_library/verilog/frac_lut4_arith.v">
<design_technology type="cmos" fracturable_lut="true"/>
<input_buffer exist="false"/>
<output_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__buf_2"/>
<lut_input_inverter exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
<lut_input_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__buf_2"/>
<lut_intermediate_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__buf_2"␣

→˓location_map="-1-"/>
<pass_gate_logic circuit_model_name="sky130_fd_sc_hd__mux2_1"/>
<port type="input" prefix="in" size="4" tri_state_map="---1" circuit_model_name=

→˓"sky130_fd_sc_hd__or2_1"/>
<port type="input" prefix="cin" size="1" is_harden_lut_port="true"/>
<port type="output" prefix="lut3_out" size="2" lut_frac_level="3" lut_output_mask="0,1

→˓"/>
<port type="output" prefix="lut4_out" size="1" lut_output_mask="0"/>
<port type="output" prefix="cout" size="1" is_harden_lut_port="true"/>
<port type="sram" prefix="sram" size="16"/>
<port type="sram" prefix="mode" size="2" mode_select="true" circuit_model_name="DFFRQ"␣

→˓default_val="1"/>
</circuit_model>

This example shows:
• Fracturable 4-input LUT which is configurable by 16 SRAM cells.

• There are two output wired to the 3th stage of routing multiplexer (the outputs of dual 3-input LUTs)

• There are two outputs wired to the 2th stage of routing multiplexer (the outputs of 2-input LUTs in the in
the lower part of SRAM cells). Note that the two outputs drive the embedded carry logic

• There is a harden carry logic, i.e., a 2-input MUX, to implement high-performance carry function.

• There is a mode-switch multiplexer at cin port, which is used to switch between arithemetic mode and
regular LUT mode.

Note: If the embedded harden logic are driven partially by LUT outputs, users may use the Bitstream Setting (.xml)
to gaurantee correct bitstream generation for the LUTs.

7.8.7 Datapath Flip-Flops

Note: OpenFPGA does not auto-generate any netlist for datapath flip-flops. Users should define the HDL modeling
in external netlists and ensure consistency to physical designs.

126 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

Template

<circuit_model type="ff" name="<string>" prefix="<string>" spice_netlist="<string>"␣
→˓verilog_netlist="<string>"/>
<design_technology type="cmos"/>
<input_buffer exist="<string>" circuit_model_name="<string>"/>
<output_buffer exist="<string>" circuit_model_name="<string>"/>
<port type="input" prefix="<string>" size="<int>"/>
<port type="output" prefix="<string>" size="<int>"/>
<port type="clock" prefix="<string>" size="<int>"/>

</circuit_model>

Note: The circuit designs of flip-flops are highly dependent on the technology node and well optimized by engineers.
Therefore, FPGA-Verilog/SPICE requires users to provide their customized FF Verilog/SPICE/Verilog netlists. A
sample Verilog/SPICE netlist of FF can be found in the directory SpiceNetlists in the released package.

The information of input and output buffer should be clearly specified according to the customized SPICE netlist! The
existence of input/output buffers will influence the decision in creating SPICE testbenches, which may leads to larger
errors in power analysis.

Note: FPGA-Verilog/SPICE currently support only one clock domain in the FPGA. Therefore there should be only
one clock port to be defined and the size of the clock port should be 1.

type="ff"

ff is a regular flip-flop to be used in datapath logic, e.g., a configurable logic block.

Note: A flip-flop should at least have three types of ports, input, output and clock.

Note: If the user provides a customized Verilog/SPICE netlist, the bandwidth of ports should be defined to the same
as the Verilog/SPICE netlist.

D-type Flip-Flop

Fig. 7.39 illustrates an example of regular flip-flop.

Fig. 7.39: An example of classical Flip-Flop.

The code describing this FF is:

7.8. Circuit model examples 127

OpenFPGA Documentation, Release 1.2.2022

<circuit_model type="ff" name="dff" prefix="dff" verilog_netlist="ff.v" spice_netlist=
→˓"ff.sp">
<port type="input" prefix="D" lib_name="D" size="1"/>
<port type="input" prefix="Set" lib_name="S" size="1" is_global="true"/>
<port type="input" prefix="Reset" lib_name="R" size="1" is_global="true"/>
<port type="output" prefix="Q" lib_name="Q" size="1"/>
<port type="clock" prefix="clk" lib_name="CK" size="1" is_global="true"/>

</circuit_model>

This example shows:
• A regular flip-flop which is defined in a Verilog netlist ff.v and a SPICE netlist ff.sp

• The flip-flop has set and reset functionalities

• The flip-flop port names defined differently in standard cell library and VPR architecture. The lib_name
capture the port name defined in standard cells, while prefix capture the port name defined in pb_type
of VPR architecture file

Multi-mode Flip-Flop

Fig. 7.40 illustrates an example of a flip-flop which can be operate in different modes.

Fig. 7.40: An example of a flip-flop which can be operate in different modes

The code describing this FF is:

<circuit_model type="ff" name="frac_ff" prefix="frac_ff" verilog_netlist="frac_ff.v"␣
→˓spice_netlist="frac_ff.sp">
<port type="input" prefix="D" lib_name="D" size="1"/>
<port type="input" prefix="Reset" lib_name="RST_OP" size="1" is_global="true"/>
<port type="output" prefix="Q" lib_name="Q" size="1"/>
<port type="clock" prefix="clock" lib_name="CLK" size="1" is_global="true"/>
<port type="sram" prefix="MODE" lib_name="MODE" size="1" mode_select="true" circuit_

→˓model_name="CCFF" default_value="0"/>
</circuit_model>

This example shows:
• A multi-mode flip-flop which is defined in a Verilog netlist frac_ff.v and a SPICE netlist frac_ff.sp

• The flip-flop has a reset pin which can be either active-low or active-high, depending on the mode selection
pin MODE.

• The mode-selection bit will be generated by a configurable memory outside the flip-flop, which will be
implemented by a circuit model CCFF defined by users (see an example in Regular Configuration-chain
Flip-flop).

• The flip-flop port names defined differently in standard cell library and VPR architecture. The lib_name
capture the port name defined in standard cells, while prefix capture the port name defined in pb_type
of VPR architecture file

128 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

7.8.8 Configuration Chain Flip-Flop

Note: OpenFPGA does not auto-generate any netlist for configuration chain flip-flops. Users should define the HDL
modeling in external netlists and ensure consistency to physical designs.

Template

<circuit_model type="ccff" name="<string>" prefix="<string>" spice_netlist="<string>"␣
→˓verilog_netlist="<string>"/>
<design_technology type="cmos"/>
<input_buffer exist="<string>" circuit_model_name="<string>"/>
<output_buffer exist="<string>" circuit_model_name="<string>"/>
<port type="input" prefix="<string>" size="<int>"/>
<port type="output" prefix="<string>" size="<int>"/>
<port type="clock" prefix="<string>" size="<int>"/>

</circuit_model>

Note: The circuit designs of configurable memory elements are highly dependent on the technology node and
well optimized by engineers. Therefore, FPGA-Verilog/SPICE requires users to provide their customized FF Ver-
ilog/SPICE/Verilog netlists. A sample Verilog/SPICE netlist of FF can be found in the directory SpiceNetlists in the
released package.

The information of input and output buffer should be clearly specified according to the customized SPICE netlist! The
existence of input/output buffers will influence the decision in creating SPICE testbenches, which may leads to larger
errors in power analysis.

Note: FPGA-Verilog/SPICE currently support only one clock domain for any configuration protocols in the FPGA.
Therefore there should be only one clock port to be defined and the size of the clock port should be 1.

Note: A flip-flop should at least have three types of ports, input, output and clock.

Note: If the user provides a customized Verilog/SPICE netlist, the bandwidth of ports should be defined to the same
as the Verilog/SPICE netlist.

Note: In a valid FPGA architecture, users should provide at least either a ccff or sram circuit model, so that the
configurations can loaded to core logic.

7.8. Circuit model examples 129

OpenFPGA Documentation, Release 1.2.2022

Regular Configuration-chain Flip-flop

Fig. 7.41 illustrates an example of standard flip-flops used to build a configuration chain.

Fig. 7.41: An example of a Flip-Flop organized in a chain.

The code describing this FF is:

<circuit_model type="ccff" name="ccff" prefix="ccff" verilog_netlist="ccff.v" spice_
→˓netlist="ccff.sp">
<port type="input" prefix="D" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="output" prefix="QN" size="1"/>
<port type="clock" prefix="CK" size="1" is_global="true" is_prog="true" is_clock="true

→˓"/>
</circuit_model>

This example shows:
• A configuration-chain flip-flop which is defined in a Verilog netlist ccff.v and a SPICE netlist ccff.sp

• The flip-flop has a global clock port, CK, which will be wired a global programming clock

Note:
The output ports of the configuration flip-flop must follow a fixed sequence in definition:

• The first output port MUST be the data output port, e.g., Q.

• The second output port MUST be the inverted data output port, e.g., QN.

Configuration-chain Flip-flop with Configure Enable Signals

Configuration chain could be built with flip-flops with outputs that are enabled by specific signals. Consider the example
in Fig. 7.42, the flip-flop has

• a configure enable signal CFG_EN to release the data output Q and QN

• a pair of data outputs Q and QN which are controlled by the configure enable signal CFG_EN

• a regular data output SCAN_Q which outputs registered data

Fig. 7.42: An example of a Flip-Flop with config enable feature organized in a chain.

The code describing this FF is:

<circuit_model type="ccff" name="ccff" prefix="ccff" verilog_netlist="ccff.v" spice_
→˓netlist="ccff.sp">
<port type="input" prefix="CFG_EN" size="1" is_global="true" is_config_enable="true"/>
<port type="input" prefix="D" size="1"/>
<port type="output" prefix="SCAN_Q" size="1"/>
<port type="output" prefix="QN" size="1"/>
<port type="output" prefix="Q" size="1"/>

(continues on next page)

130 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

<port type="clock" prefix="CK" size="1" is_global="true" is_prog="true" is_clock="true
→˓"/>
</circuit_model>

Note:
The output ports of the configuration flip-flop must follow a fixed sequence in definition:

• The first output port MUST be the regular data output port, e.g., SCAN_Q.

• The second output port MUST be the inverted data output port which is activated by the configure enable
signal, e.g., QN.

• The second output port MUST be the data output port which is activated by the configure enable signal,
e.g., Q.

Configuration-chain Flip-flop with Scan Input

Configuration chain could be built with flip-flops with a scan chain input . Consider the example in Fig. 7.43, the
flip-flop has

• an additional input SI to enable scan-chain capabaility

• a configure enable signal CFG_EN to release the data output Q and QN

• a pair of data outputs Q and QN which are controlled by the configure enable signal CFG_EN

• a regular data output SCAN_Q which outputs registered data

Fig. 7.43: An example of a Flip-Flop with scan input organized in a chain.

The code describing this FF is:

<circuit_model type="ccff" name="ccff" prefix="ccff" verilog_netlist="ccff.v" spice_
→˓netlist="ccff.sp">
<port type="input" prefix="CFG_EN" size="1" is_global="true" is_config_enable="true"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="SI" size="1"/>
<port type="output" prefix="SCAN_Q" size="1"/>
<port type="output" prefix="QN" size="1"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="CK" size="1" is_global="true" is_prog="true" is_clock="true

→˓"/>
</circuit_model>

Note:
The input ports of the configuration flip-flop must follow a fixed sequence in definition:

• The first input port MUST be the regular data input port, e.g., D.

• The second input port MUST be the scan input port, e.g., SI.

7.8. Circuit model examples 131

OpenFPGA Documentation, Release 1.2.2022

7.8.9 Hard Logics

Note: OpenFPGA does not auto-generate any netlist for the hard logics. Users should define the HDL modeling in
external netlists and ensure consistency to physical designs.

Template

<circuit_model type="hardlogic" name="<string>" prefix="<string>" verilog_netlist="
→˓<string>" spice_netlist="<string>"/>
<design_technology type="cmos"/>
<input_buffer exist="<string>" circuit_model_name="<string>"/>
<output_buffer exist="<string>" circuit_model_name="<string>"/>
<port type="input" prefix="<string>" size="<int>"/>
<port type="output" prefix="<string>" size="<int>"/>

</circuit_model>

Note: Hard logics are defined for non-configurable resources in FPGA architectures, such as adders, multipliers and
RAM blocks. Their circuit designs are highly dependent on the technology node and well optimized by engineers.
As more functional units are included in FPGA architecture, it is impossible to auto-generate these functional units.
Therefore, FPGA-Verilog/SPICE requires users to provide their customized Verilog/SPICE netlists.

Note: Examples can be found in hard_logic_example_link

Note: The information of input and output buffer should be clearly specified according to the customized Ver-
ilog/SPICE netlist! The existence of input/output buffers will influence the decision in creating SPICE testbenches,
which may leads to larger errors in power analysis.

Full Adder

Fig. 7.44: An example of a 1-bit full adder.

The code describing the 1-bit full adder is:

<circuit_model type="hard_logic" name="adder" prefix="adder" spice_netlist="adder.sp"␣
→˓verilog_netlist="adder.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="inv1x"/>
<output_buffer exist="true" circuit_model_name="inv1x"/>
<port type="input" prefix="a" size="1"/>
<port type="input" prefix="b" size="1"/>
<port type="input" prefix="cin" size="1"/>
<port type="output" prefix="cout" size="1"/>
<port type="output" prefix="sumout" size="1"/>

</circuit_model>

132 Chapter 7. OpenFPGA Architecture Description

https://github.com/LNIS-Projects/OpenFPGA/tree/master/openfpga_flow/VerilogNetlists

OpenFPGA Documentation, Release 1.2.2022

This example shows:
• A 1-bit full adder which is defined in a Verilog netlist adder.v and a SPICE netlist adder.sp

• The adder has three 1-bit inputs, i.e., a, b and cin, and two 2-bit outputs, i.e., cout, sumout.

Multiplier

Fig. 7.45: An example of a 8-bit multiplier.

The code describing the multiplier is:

<circuit_model type="hard_logic" name="mult8x8" prefix="mult8x8" spice_netlist="dsp.sp"␣
→˓verilog_netlist="dsp.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="inv1x"/>
<output_buffer exist="true" circuit_model_name="inv1x"/>
<port type="input" prefix="a" size="8"/>
<port type="input" prefix="b" size="8"/>
<port type="output" prefix="out" size="16"/>

</circuit_model>

This example shows:
• A 8-bit multiplier which is defined in a Verilog netlist dsp.v and a SPICE netlist dsp.sp

Multi-mode Multiplier

Fig. 7.46: An example of a 8-bit multiplier which can operating in two modes: (1) dual 4-bit multipliers; and (2) 8-bit
multiplier

The code describing the multiplier is:

<circuit_model type="hard_logic" name="frac_mult8x8" prefix="frac_mult8x8" spice_netlist=
→˓"dsp.sp" verilog_netlist="dsp.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="inv1x"/>
<output_buffer exist="true" circuit_model_name="inv1x"/>
<port type="input" prefix="a" size="8"/>
<port type="input" prefix="b" size="8"/>
<port type="output" prefix="out" size="16"/>
<port type="sram" prefix="mode" size="1" mode_select="true" circuit_model_name="CCFF"␣

→˓default_value="0"/>
</circuit_model>

This example shows:
• A multi-mode 8-bit multiplier which is defined in a Verilog netlist dsp.v and a SPICE netlist dsp.sp

• The multi-mode multiplier can operating in two modes: (1) dual 4-bit multipliers; and (2) 8-bit multiplier

• The mode-selection bit will be generated by a configurable memory outside the flip-flop, which will be
implemented by a circuit model CCFF defined by users (see an example in Regular Configuration-chain
Flip-flop).

7.8. Circuit model examples 133

OpenFPGA Documentation, Release 1.2.2022

Dual Port Block RAM

Fig. 7.47: An example of a dual port block RAM with 128 addresses and 8-bit data width.

The code describing this block RAM is:

<circuit_model type="hard_logic" name="dpram_128x8" prefix="dpram_128x8" spice_netlist=
→˓"dpram.sp" verilog_netlist="dpram.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="inv1x"/>
<output_buffer exist="true" circuit_model_name="inv1x"/>
<port type="input" prefix="waddr" size="7"/>
<port type="input" prefix="raddr" size="7"/>
<port type="input" prefix="data_in" size="8"/>
<port type="input" prefix="wen" size="1"/>
<port type="input" prefix="ren" size="1"/>
<port type="output" prefix="data_out" size="8"/>
<port type="clock" prefix="clock" size="1" is_global="true" default_val="0"/>

</circuit_model>

This example shows:
• A 128x8 dual port RAM which is defined in a Verilog netlist dpram.v and a SPICE netlist dpram.sp

• The clock port of the RAM is controlled by a global signal (see details about global signal definition in
Physical Tile Annotation).

Multi-mode Dual Port Block RAM

Fig. 7.48: An example of a dual port block RAM which can operate in two modes: 128x8 and 256x4.

The code describing this block RAM is:

<circuit_model type="hard_logic" name="frac_dpram_128x8" prefix="frac_dpram_128x8" spice_
→˓netlist="frac_dpram.sp" verilog_netlist="frac_dpram.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="inv1x"/>
<output_buffer exist="true" circuit_model_name="inv1x"/>
<port type="input" prefix="waddr" size="8"/>
<port type="input" prefix="raddr" size="8"/>
<port type="input" prefix="data_in" size="8"/>
<port type="input" prefix="wen" size="1"/>
<port type="input" prefix="ren" size="1"/>
<port type="output" prefix="data_out" size="8"/>
<port type="clock" prefix="clock" size="1" is_global="true" default_val="0"/>
<port type="sram" prefix="mode" size="1" mode_select="true" circuit_model_name="CCFF"␣

→˓default_value="0"/>
</circuit_model>

This example shows:
• A fracturable dual port RAM which is defined in a Verilog netlist frac_dpram.v and a SPICE netlist
frac_dpram.sp

134 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

• The dual port RAM can operate in two modes: (1) 128 addresses with 8-bit data width; (2) 256 addresses
with 4-bit data width

• The clock port of the RAM is controlled by a global signal (see details about global signal definition in
Physical Tile Annotation).

• The mode-selection bit will be generated by a configurable memory outside the flip-flop, which will be
implemented by a circuit model CCFF defined by users (see an example in Regular Configuration-chain
Flip-flop).

7.8.10 Routing Wire Segments

FPGA architecture requires two type of wire segments:

• wire, which targets the local wires inside the logic blocks. The wire has one input and one output, directly
connecting the output of a driver and the input of the downstream unit, respectively

• chan_wire, especially targeting the channel wires. The channel wires have one input and two outputs, one of
which is connected to the inputs of Connection Boxes while the other is connected to the inputs of Switch Boxes.
Two outputs are created because from the view of layout, the inputs of Connection Boxes are typically connected
to the middle point of channel wires, which has less parasitic resistances and capacitances than connected to the
ending point.

Template

<circuit_model type="wire|cham_wire" name="<string>" prefix="<string>" spice_netlist="
→˓<string>" verilog_netlist="<string>"/>
<design_technology type="cmos"/>
<input_buffer exist="<string>" circuit_model_name="<string>"/>
<output_buffer exist="<string>" circuit_model_name="<string>"/>
<port type="input" prefix="<string>" size="<int>"/>
<port type="output" prefix="<string>" size="<int>"/>
<wire_param model_type="<string>" R="<float>" C="<float>" num_level="<int>"/>

</circuit_model>

Note: FPGA-Verilog/SPICE can auto-generate the Verilog/SPICE model for wires while also allows users to provide
their customized Verilog/SPICE netlists.

Note: The information of input and output buffer should be clearly specified according to the customized netlist! The
existence of input/output buffers will influence the decision in creating testbenches, which may leads to larger errors in
power analysis.

<wire_param model_type="<string>" R="<float>" C="<float>" num_level="<int>"/>

• model_type="pi|T" Specify the type of RC models for this wire segement. Currently, OpenFPGA sup-
ports the 𝜋-type and T-type multi-level RC models.

• R="<float>" Specify the total resistance of the wire

• C="<float>" Specify the total capacitance of the wire.

• num_level="<int>" Specify the number of levels of the RC wire model.

7.8. Circuit model examples 135

OpenFPGA Documentation, Release 1.2.2022

Note: wire parameters are essential for FPGA-SPICE to accurately model wire parasitics

Routing Track Wire Example

Fig. 7.49 depicts the modeling for a length-2 channel wire.

Fig. 7.49: An example of a length-2 channel wire modeling

The code describing this wire is:

<circuit_model type="chan_wire" name="segment0" prefix="chan_wire"/>
<design_technology type="cmos"/>
<port type="input" prefix="mux_out" size="1"/>
<port type="output" prefix="cb_sb" size="1"/>
<wire_param model_type="pi" res_val="103.84" cap_val="13.80e-15" level="1"/>

</circuit_model>

This example shows
• A routing track wire has 1 input and output

• The routing wire will be modelled as a 1-level 𝜋-type RC wire model with a total resistance of 103.84Ω
and a total capacitance of 13.89𝑓𝐹

136 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

7.8.11 I/O pads

Note: OpenFPGA does not auto-generate any netlist for I/O cells. Users should define the HDL modeling in external
netlists and ensure consistency to physical designs.

Template

<circuit_model type="iopad" name="<string>" prefix="<string>" spice_netlist="<string>"␣
→˓verilog_netlist="<string>"/>
<design_technology type="cmos"/>
<input_buffer exist="<string>" circuit_model_name="<string>"/>
<output_buffer exist="<string>" circuit_model_name="<string>"/>
<port type="input" prefix="<string>" size="<int>"/>
<port type="output" prefix="<string>" size="<int>"/>
<port type="sram" prefix="<string>" size="<int>" mode_select="<bool>" circuit_model_

→˓name="<string>" default_val="<int>"/>
</circuit_model>

Note: The circuit designs of I/O pads are highly dependent on the technology node and well optimized by engineers.
Therefore, FPGA-Verilog/SPICE requires users to provide their customized Verilog/SPICE/Verilog netlists. A sample
Verilog/SPICE netlist of an I/O pad can be found in the directory SpiceNetlists in the released package.

Note: The information of input and output buffer should be clearly specified according to the customized netlist! The
existence of input/output buffers will influence the decision in creating testbenches, which may leads to larger errors in
power analysis.

General Purpose I/O

Fig. 7.50 depicts a general purpose I/O pad.

Fig. 7.50: An example of an IO-Pad

The code describing this I/O-Pad is:

<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="io.sp" verilog_
→˓netlist="io.v">
<design_technology type="cmos"/>
<input_buffer exist="true" circuit_model_name="INVTX1"/>

(continues on next page)

7.8. Circuit model examples 137

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

<output_buffer exist="true" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="inout" prefix="pad" size="1" is_global="true" is_io="true" is_data_io="true

→˓"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="ccff"␣

→˓default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="output" prefix="inpad" size="1"/>

</circuit_model>

This example shows
• A general purpose I/O cell defined in Verilog netlist io.sp and SPICE netlist io.sp

• The I/O cell has an inout port as the bi-directional port

• The directionality of I/O can be controlled by a configuration-chain flip-flop defined in circuit model ccff

• If unused, the I/O cell will be configured to 1

7.9 Bind circuit modules to VPR architecture

Each defined circuit model should be linked to an FPGA module defined in the original part of architecture descriptions.
It helps FPGA-circuit creating the circuit netlists for logic/routing blocks. Since the original part lacks such support,
we create a few XML properties to link to Circuit models.

7.9.1 Switch Blocks

Original VPR architecture description contains an XML node called switchlist under which all the multiplexers of
switch blocks are described. To link a defined circuit model to a multiplexer in the switch blocks, a new XML property
circuit_model_name should be added to the descriptions.

Here is an example:

<switch_block>
<switch type="mux" name="<string>" circuit_model_name="<string>"/>

</switch_block>

• circuit_model_name="<string>" should match a circuit model whose type is mux defined in Circuit Library.

7.9.2 Connection Blocks

To link the defined circuit model of the multiplexer to the Connection Blocks, a circuit_model_name should be
annotated to the definition of Connection Blocks switches.

Here is the example:

<connection_block>
<switch type="ipin_cblock" name="<string>" circuit_model_name="<string>"/>

</connection_block>

• circuit_model_name="<string>" should match a circuit model whose type is mux defined in Circuit Library.

138 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

7.9.3 Channel Wire Segments

Similar to the Switch Boxes and Connection Blocks, the channel wire segments in the original architecture descriptions
can be adapted to provide a link to the defined circuit model.

<segmentlist>
<segment name="<string>" circuit_model_name="<string>"/>

</segmentlist>

• circuit_model_name="<string>" should match a circuit model whose type is chan_wire defined in Circuit
Library.

7.9.4 Physical Tile Annotation

Original VPR architecture description contains <tile> XML nodes to define physical tile pins. OpenFPGA allows
users to define pin/port of physical tiles as global ports.

Here is an example:

<tile_annotations>
<merge_subtile_ports tile="<string>" port="<string>"/>
<global_port name="<string>" is_clock="<bool>" clock_arch_tree_name="<string>" is_

→˓reset="<bool>" is_set="<bool>" default_val="<int>">
<tile name="<string>" port="<string>" x="<int>" y="<int>"/>
...

</global_port>
</tile_annotations>

For subtile port merge support (see an illustrative example in Fig. 7.51):

• tile="<string>" is the name of tile, that is defined in VPR architecture

• port="<string>" is the name of a port of the tile, that is defined in VPR architecture

Warning: This is an option for power users. Suggest to enable for those global input ports, such as clock and reset,
whose Fc is set to 0 in VPR architecture!!!

Note: When defined, the given port of all the subtiles of a tile will be merged into one port. For example, a tile consists
of 8 subtile A and 6 subtile B and all the subtiles have a port clk, in the FPGA fabric, all the clk of the subtiles A and
B will be wired to a common port clk at tile level.

Note: When merged, the port will have a default side of TOP and index of 0 on all the attributes, such as width, height
etc.

For global port support:

• name="<string>" is the port name to appear in the top-level FPGA fabric.

• is_clock="<bool>" define if the global port is a clock port at the top-level FPGA fabric. An operating clock
port will be driven by proper signals in auto-generated testbenches.

7.9. Bind circuit modules to VPR architecture 139

OpenFPGA Documentation, Release 1.2.2022

Fig. 7.51: Difference in netlists with and without subtile port merging

• clock_arch_tree_name="<string>" defines the name of the programmable clock network, which the global
port will drive. The name of the programmable clock network must be a valid name (See details in Clock Network
(.xml))

• is_reset="<bool>" define if the global port is a reset port at the top-level FPGA fabric. An operating reset
port will be driven by proper signals in testbenches.

• is_set="<bool>" define if the global port is a set port at the top-level FPGA fabric. An operating set port will
be driven by proper signals in testbenches.

Note: A port can only be defined as clock or set or reset.

Note: All the global port from a physical tile port is only used in operating phase. Any ports for programmable use
are not allowed!

• default_val="<int>" define if the default value for the global port when initialized in testbenches. Valid
values are either 0 or 1. For example, the default value of an active-high reset pin is 0, while an active-low reset
pin is 1.

Note: A global port could be connected from different tiles by defining multiple <tile> lines under a global port!!!

<tile name="<string>" port="<string>" x="<int>" y="<int>"/>

• name="<string>" is the name of a physical tile, e.g., name="clb".

• port="<string>" is the port name of a physical tile, e.g., port="clk[0:3]".

• x="<int>" is the x coordinate of a physical tile, e.g., x="1". If the x coordinate is set to -1, it means all the
valid x coordinates of the selected physical tile in the FPGA device will be considered.

• y="<int>" is the y coordinate of a physical tile, e.g., y="1". If the y coordinate is set to -1, it means all the
valid y coordinates of the selected physical tile in the FPGA device will be considered.

140 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

Note: The port of physical tile must be a valid port of the physical definition in VPR architecture! If you define a
multi-bit port, it must be explicitly defined in the port, e.g., clk[0:3], which must be in the range of the port definition
in physical tiles of VPR architecture files!!!

Note: The linked port of physical tile must meet the following requirements:

• If the global_port is set as clock through is_clock="true", the port of the physical tile must also be a clock
port.

• If not a clock, the port of the physical tile must be defined as non-clock global

• The port of the physical tile should have zero connectivity (Fc=0) in VPR architecture

A more illustrative example:

Fig. 7.52 illustrates the difference between the global ports defined through circuit_model and tile_annotation.

Fig. 7.52: Difference between global port definition through circuit model and tile annotation

When a global port, e.g., clk, is defined in circuit_model using the following code:

<circuit_model>
<port name="clk" is_global="true" is_clock="true"/>

</circuit_model>

Dedicated feedthrough wires will be created across all the modules from top-level to primitive.

When a global port, e.g., clk, is defined in tile_annotation using the following code:

<tile_annotations>
<global_port name="clk" is_clock="true">
<tile name="clb" port="clk"/>

(continues on next page)

7.9. Bind circuit modules to VPR architecture 141

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

</global_port>
</tile_annotations>

Note that a global port can also be defined to drive only a partial bit of a port of a physical tile.

<tile_annotations>
<global_port name="clk" is_clock="true">
<tile name="clb" port="clk[3:3]"/>

</global_port>
</tile_annotations>

Clock port clk of each clb tile will be connected to a common clock port of the top module, while local clock
network is customizable through VPR’s architecture description language. For instance, the local clock network can
be a programmable clock network.

7.9.5 Primitive Blocks inside Multi-mode Configurable Logic Blocks

The architecture description employs a hierarchy of pb_types to depict the sub-modules and complex interconnec-
tions inside logic blocks. Each leaf node and interconnection in the pb_type hierarchy should be linked to a circuit
model. Each primitive block, i.e., the leaf pb_types, should be linked to a valid circuit model, using the XML syntax
circuit_model_name. The circuit_model_name should match the given name of a circuit_model defined by
users.

<pb_type_annotations>
<!-- physical pb_type binding in complex block IO -->
<pb_type name="io" physical_mode_name="physical"/>
<pb_type name="io[physical].iopad" circuit_model_name="iopad" mode_bits="1"/>
<pb_type name="io[inpad].inpad" physical_pb_type_name="io[physical].iopad" mode_bits="1

→˓"/>
<pb_type name="io[outpad].outpad" physical_pb_type_name="io[physical].iopad" mode_bits=

→˓"0"/>
<!-- End physical pb_type binding in complex block IO -->

<!-- physical pb_type binding in complex block CLB -->
<!-- physical mode will be the default mode if not specified -->
<pb_type name="clb">
<!-- Binding interconnect to circuit models as their physical implementation, if not␣

→˓defined, we use the default model -->
<interconnect name="crossbar" circuit_model_name="mux_2level"/>

</pb_type>
<pb_type name="clb.fle" physical_mode_name="physical"/>
<pb_type name="clb.fle[physical].fabric.frac_logic.frac_lut6" circuit_model_name="frac_

→˓lut6" mode_bits="0"/>
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="static_dff"/>
<!-- Binding operating pb_type to physical pb_type -->
<pb_type name="clb.fle[n2_lut5].lut5inter.ble5.lut5" physical_pb_type_name="clb.

→˓fle[physical].fabric.frac_logic.frac_lut6" mode_bits="1" physical_pb_type_index_factor=
→˓"0.5">
<!-- Binding the lut5 to the first 5 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:4]"/>
<port name="out" physical_mode_port="lut5_out" physical_mode_pin_rotate_offset="1"/>

(continues on next page)

142 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

</pb_type>
<pb_type name="clb.fle[n2_lut5].lut5inter.ble5.ff" physical_pb_type_name="clb.

→˓fle[physical].fabric.ff"/>
<pb_type name="clb.fle[n1_lut6].ble6.lut6" physical_pb_type_name="clb.fle[physical].

→˓fabric.frac_logic.frac_lut6" mode_bits="0">
<!-- Binding the lut6 to the first 6 inputs of fracturable lut6 -->
<port name="in" physical_mode_port="in[0:5]"/>
<port name="out" physical_mode_port="lut6_out"/>

</pb_type>
<pb_type name="clb.fle[n1_lut6].ble6.ff" physical_pb_type_name="clb.fle[physical].

→˓fabric.ff" physical_pb_type_index_factor="2" physical_pb_type_index_offset="0"/>
<!-- End physical pb_type binding in complex block IO -->

</pb_type_annotations>

<pb_type name="<string>" physical_mode_name="<string>">

Specify a physical mode for multi-mode pb_type defined in VPR architecture.

Note: This should be applied to non-primitive pb_type, i.e., pb_type have child pb_type.

• name="<string>" specifiy the full name of a pb_type in the hierarchy of VPR architecture.

• physical_mode_name="<string>" Specify the name of the mode that describes the physical implemen-
tation of the configurable block. This is critical in modeling actual circuit designs and architecture of an
FPGA. Typically, only one physical_mode should be specified for each multi-mode pb_type.

Note: OpenFPGA will infer the physical mode for a single-mode pb_type defined in VPR architecture

<pb_type name="<string>" physical_pb_type_name="<string>"

circuit_model_name="<string>" mode_bits="<int>"

physical_pb_type_index_factor="<float>" physical_pb_type_index_offset="<int>">

Specify the physical implementation for a primitive pb_type in VPR architecture

Note: This should be applied to primitive pb_type, i.e., pb_type have no children.

Note: This definition should be placed directly under the XML node <pb_type_annotation> without any
intermediate XML nodes!

• name="<string>" specifiy the full name of a pb_type in the hierarchy of VPR architecture.

• physical_pb_type_name=<string> creates the link on pb_type between operating and physical
modes. This syntax is mandatory for every primitive pb_type in an operating mode pb_type. It should
be a valid name of primitive pb_type in physical mode.

• circuit_model_name="<string>" Specify a circuit model to implement a pb_type in VPR archi-
tecture. The circuit_model_name is mandatory for every primitive``pb_type`` in a physical_mode
pb_type.

7.9. Bind circuit modules to VPR architecture 143

OpenFPGA Documentation, Release 1.2.2022

• mode_bits="<int>" Specify the configuration bits for the circuit_model when operating at an op-
erating mode. The length of mode_bits should match the port size defined in circuit_model. The
mode_bits should be derived from circuit designs while users are responsible for its correctness. FPGA-
Bitstreamm will add the mode_bits during bitstream generation.

• physical_pb_type_index_factor="<float>" aims to align the indices for pb_type between operat-
ing and physical modes, especially when an operating mode contains multiple pb_type (num_pb>1) that
are linked to the same physical pb_type. When physical_pb_type_name is larger than 1, the index of
pb_type will be multipled by the given factor.

• physical_pb_type_index_offset=<int> aims to align the indices for pb_type between operating and
physical modes, especially when an operating mode contains multiple pb_type (num_pb>1) that are linked
to the same physical pb_type. When physical_pb_type_name is larger than 1, the index of pb_type
will be shifted by the given factor.

<interconnect name="<string>" circuit_model_name="<string>">

• name="<string>" specify the name of a interconnect in VPR architecture. Different from pb_type,
hierarchical name is not required here.

• circuit_model_name="<string>" For the interconnection type direct, the type of the linked circuit
model should be wire. For multiplexers, the type of linked circuit model should be mux. For complete, the
type of the linked circuit model can be either mux or wire, depending on the case.

Note: A <pb_type name="<string>"> parent XML node is required for the interconnect-to-circuit bindings
whose interconnects are defined under the pb_type in VPR architecture description.

<port name="<string>" physical_mode_port="<string>"

physical_mode_pin_initial_offset="<int>"

physical_mode_pin_rotate_offset="<int>"/>

physical_mode_port_rotate_offset="<int>"/>

Link a port of an operating pb_type to a port of a physical pb_type

• name="<string>" specifiy the name of a port in VPR architecture. Different from pb_type, hierarchical
name is not required here.

• physical_mode_pin="<string>" creates the link of ``port of pb_type between operating
and physical modes. This syntax is mandatory for every primitive pb_type in an operating mode pb_type.
It should be a valid port name of leaf pb_type in physical mode and the port size should also match.

Note: Users can define multiple ports. For example: physical_mode_pin="a[0:1]
b[2:2]". When multiple ports are used, the physical_mode_pin_initial_offset
and physical_mode_pin_rotate_offset should also be adapt. For example:
physical_mode_pin_rotate_offset="1 0")

• physical_mode_pin_initial_offset="<int>" aims to align the pin indices for port of pb_type
between operating and physical modes, especially when part of port of operating mode is mapped to a port
in physical pb_type. When physical_mode_pin_initial_offset is larger than zero, the pin index of
pb_type (whose index is large than 1) will be shifted by the given offset.

Note: A quick example to understand the initial offset For example, an initial offset of -32 is used to map

– operating pb_type bram[0].dout[32] with a full path memory[dual_port].bram[0]

144 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

– operating pb_type bram[0].dout[33] with a full path memory[dual_port].bram[0]

to

– physical pb_type bram[0].dout_a[0] with a full path memory[physical].bram[0]

– physical pb_type bram[0].dout_a[1] with a full path memory[physical].bram[0]

Note: If not defined, the default value of physical_mode_pin_initial_offset is set to 0.

• physical_mode_pin_rotate_offset="<int>" aims to align the pin indices for port of pb_type
between operating and physical modes, especially when an operating mode contains multiple pb_type
(num_pb>1) that are linked to the same physical pb_type. When physical_mode_pin_rotate_offset
is larger than zero, the pin index of pb_type (whose index is large than 1) will be shifted by the given
offset, each time a pin in the operating mode is binded to a pin in the physical mode.

Note: A quick example to understand the rotate offset For example, a rotating offset of 9 is used to map

– operating pb_type mult_9x9[0].a[0] with a full path mult[frac].mult_9x9[0]

– operating pb_type mult_9x9[1].a[1] with a full path mult[frac].mult_9x9[1]

to

– physical pb_type mult_36x36.a[0] with a full path mult[physical].mult_36x36[0]

– physical pb_type mult_36x36.a[9] with a full path mult[physical].mult_36x36[0]

Note: If not defined, the default value of physical_mode_pin_rotate_offset is set to 0.

Warning: The result of using physical_mode_pin_rotate_offset is fundementally different than
physical_mode_port_rotate_offset!!! Please read the examples carefully and pick the one fitting your
needs.

• physical_mode_port_rotate_offset="<int>" aims to align the port indices for port
of pb_type between operating and physical modes, especially when an operating mode con-
tains multiple pb_type (num_pb>1) that are linked to the same physical pb_type. When
physical_mode_port_rotate_offset is larger than zero, the pin index of pb_type (whose in-
dex is large than 1) will be shifted by the given offset, only when all the pins of a port in the operating
mode is binded to all the pins of a port in the physical mode.

Note: A quick example to understand the rotate offset For example, a rotating offset of 9 is used to map

– operating pb_type mult_9x9[0].a[0:8] with a full path mult[frac].mult_9x9[0]

– operating pb_type mult_9x9[1].a[0:8] with a full path mult[frac].mult_9x9[1]

to

– physical pb_type mult_36x36.a[0:8] with a full path mult[physical].mult_36x36[0]

7.9. Bind circuit modules to VPR architecture 145

OpenFPGA Documentation, Release 1.2.2022

– physical pb_type mult_36x36.a[9:17] with a full path mult[physical].mult_36x36[0]

Note: If not defined, the default value of physical_mode_port_rotate_offset is set to 0.

Note: It is highly recommended that only one physical mode is defined for a multi-mode configurable block. Try not
to use nested physical mode definition. This will ease the debugging and lead to clean XML description.

Note: Be careful in using physical_pb_type_index_factor, physical_pb_type_index_offset and
physical_mode_pin_rotate_offset! Try to avoid using them unless for highly complex configuration blocks
with very deep hierarchy.

7.10 Fabric Key

Fabric key is a secure key for users to generate bitstream for a specific FPGA fabric. With this key, OpenFPGA can
generate correct bitstreams for the FPGA. Using a wrong key, OpenFPGA may error out or generate wrong bitstreams.
The fabric key support allows users to build secured/classified FPGA chips even with an open-source tool.

Fig. 7.53: The use of fabric key to secure the FPGA chip design

Note: Users are the only owner of the key. OpenFPGA will not store or replicate the key.

146 Chapter 7. OpenFPGA Architecture Description

OpenFPGA Documentation, Release 1.2.2022

7.10.1 Key Generation

A fabric key can be achieved in the following ways:

• OpenFPGA can auto-generate a fabric key using random algorithms (see detail in build_fabric)

• Users can craft a fabric key based on auto-generated file by following the file format description.

7.10.2 File Format

See details in Fabric Key (.xml)

7.10. Fabric Key 147

OpenFPGA Documentation, Release 1.2.2022

148 Chapter 7. OpenFPGA Architecture Description

CHAPTER

EIGHT

OPENFPGA SHELL

8.1 Launch OpenFPGA Shell

OpenFPGA employs a shell-like user interface, in order to integrate all the tools in a well-modularized way. Currently,
OpenFPGA shell is an unified platform to call vpr, FPGA-Verilog, FPGA-Bitstream, FPGA-SDC and FPGA-SPICE.
To launch OpenFPGA shell, users can choose two modes.

--interactive or -i

Launch OpenFPGA in interactive mode where users type-in command by command and get runtime results

--file or -f

Launch OpenFPGA in script mode where users write commands in scripts and FPGA will execute them

--batch_execution or -batch

Execute OpenFPGA script in batch mode. This option is only valid for script mode.

• If in batch mode, OpenFPGA will abort immediately when fatal errors occurred.

• If not in batch mode, OpenFPGA will enter interactive mode when fatal errors occurred.

--version or -v

Print version information of OpenFPGA

--help or -h

Show the help desk

8.2 OpenFPGA Script Format

OpenFPGA accepts a simplified tcl-like script format.

Comments

Any content after a # will be treated as comments. Comments will not be executed.

Note: comments can be added inline or as a new line. See the example below

Continued line

Lines to be continued should be finished with \. Continued lines will be conjuncted and executed as
one line

149

OpenFPGA Documentation, Release 1.2.2022

Note: please ensure necessary spaces. Otherwise it may cause command parser fail.

The following is an example.

Run VPR for the s298 design
vpr ./test_vpr_arch/k6_frac_N10_40nm.xml ./test_blif/and.blif --clock_modeling route #--
→˓write_rr_graph example_rr_graph.xml

Read OpenFPGA architecture definition
read_openfpga_arch -f ./test_openfpga_arch/k6_frac_N10_40nm_openfpga.xml

Write out the architecture XML as a proof
#write_openfpga_arch -f ./arch_echo.xml

Annotate the OpenFPGA architecture to VPR data base
link_openfpga_arch --activity_file ./test_blif/and.act \

--sort_gsb_chan_node_in_edges #--verbose

Check and correct any naming conflicts in the BLIF netlist
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml

Apply fix-up to clustering nets based on routing results
pb_pin_fixup --verbose

Apply fix-up to Look-Up Table truth tables based on packing results
lut_truth_table_fixup #--verbose

Build the module graph
- Enabled compression on routing architecture modules
- Enable pin duplication on grid modules
build_fabric --compress_routing \

--duplicate_grid_pin #--verbose

Repack the netlist to physical pbs
This must be done before bitstream generator and testbench generation
Strongly recommend it is done after all the fix-up have been applied
repack #--verbose

Build the bitstream
- Output the fabric-independent bitstream to a file
build_architecture_bitstream --verbose \

--file /var/tmp/xtang/openfpga_test_src/fabric_indepenent_
→˓bitstream.xml

Build fabric-dependent bitstream
build_fabric_bitstream --verbose

Write the Verilog netlist for FPGA fabric
- Enable the use of explicit port mapping in Verilog netlist
write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC \

--explicit_port_mapping \
--include_timing \

(continues on next page)

150 Chapter 8. OpenFPGA Shell

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

--include_signal_init \
--support_icarus_simulator \
--print_user_defined_template \
--verbose

Write the Verilog testbench for FPGA fabric
- We suggest the use of same output directory as fabric Verilog netlists
- Must specify the reference benchmark file if you want to output any testbenches
- Enable top-level testbench which is a full verification including programming␣
→˓circuit and core logic of FPGA
- Enable pre-configured top-level testbench which is a fast verification skipping␣
→˓programming phase
- Simulation ini file is optional and is needed only when you need to interface␣
→˓different HDL simulators using openfpga flow-run scripts
write_verilog_testbench --file /var/tmp/xtang/openfpga_test_src/SRC \

--reference_benchmark_file_path /var/tmp/xtang/and.v \
--print_top_testbench \
--print_preconfig_top_testbench \
--print_simulation_ini /var/tmp/xtang/openfpga_test_src/

→˓simulation_deck.ini

Write the SDC files for PnR backend
- Turn on every options here
write_pnr_sdc --file /var/tmp/xtang/openfpga_test_src/SDC

Write the SDC to run timing analysis for a mapped FPGA fabric
write_analysis_sdc --file /var/tmp/xtang/openfpga_test_src/SDC_analysis

Finish and exit OpenFPGA
exit

8.3 Commands

As OpenFPGA integrates various tools, the commands are categorized into different classes:

8.3. Commands 151

OpenFPGA Documentation, Release 1.2.2022

8.3.1 Basic Commands

version

Show OpenFPGA version information

help

Show help desk to list all the available commands

source

Run a set of existing commands from a string stream or a file

--command_stream <string>

A string/file stream which contains the commands to be executed. Use quote(") to group command
and semicolumn(;) to split between commands. For example,

source --command_stream "help;exit;"

--from_file

Specify the command stream comes from a file. When selected, the file will be parsed as a regular
script following the OpenFPGA script file format. See details in OpenFPGA Script Format

--batch_mode

Enable batch mode when executing the script from a file. Valid only when --from_file is enabled.

Note: If you are sourcing a file when running OpenFPGA in script mode, please turn on the batch
mode here. See details in Launch OpenFPGA Shell

ext_exec

Run a system call for a command which is not in OpenFPGA shell

--command <string>

A string stream which contains the command to be executed. Use quote(") to group command. For
example,

ext_exec --command "ls -all"

exit

Exit OpenFPGA shell

152 Chapter 8. OpenFPGA Shell

OpenFPGA Documentation, Release 1.2.2022

8.3.2 VPR Commands

vpr

OpenFPGA allows users to call vpr in the standard way as documented in the vtr_project.

Note: This command will run vpr in a standalone way, whose results will be kept and used by other
commands. Suggest to use when this is the final run of VPR.

For example, vpr commands may be called in the following way:

VPR standalone runs, no results will be kept for downstream commands
vpr_standalone <some_options>
vpr_standalone <some_options>
More standalone runs may be expected
vpr_standalone <some_options>
Final VPR run, results are kept for downstream commands
vpr <some_options>
Other commands that use VPR results

vpr_standalone

OpenFPGA allows users to call vpr in the standard way as documented in the vtr_project.

Note: This command will run vpr in a standalone way, whose results will not be kept and not used by
other commands. Suggest to use when only some stages of VPR are needed.

8.3.3 Setup OpenFPGA

read_openfpga_arch

Read the XML file about architecture description (see details in General Hierarchy)

--file <string> or -f <string>

Specify the file name. For example, --file openfpga_arch.xml

--verbose

Show verbose log

write_openfpga_arch

Write the OpenFPGA XML architecture file to a file

--file <string> or -f <string>

Specify the file name. For example, --file arch_echo.xml

--verbose

Show verbose log

8.3. Commands 153

https://github.com/verilog-to-routing/vtr-verilog-to-routing
https://github.com/verilog-to-routing/vtr-verilog-to-routing

OpenFPGA Documentation, Release 1.2.2022

read_openfpga_simulation_setting

Read the XML file about simulation settings (see details in Simulation settings)

--file <string> or -f <string>

Specify the file name. For example, --file auto_simulation_setting.xml

--verbose

Show verbose log

write_openfpga_simulation_setting

Write the OpenFPGA XML simulation settings to a file

--file <string> or -f <string>

Specify the file name. For example, --file auto_simulation_setting_echo.xml. See details
about file format at Simulation settings.

--verbose

Show verbose log

read_openfpga_bitstream_setting

Read the XML file about bitstream settings (see details in Bitstream Setting (.xml))

--file <string> or -f <string>

Specify the file name. For example, --file bitstream_setting.xml

--verbose

Show verbose log

write_openfpga_bitstream_setting

Write the OpenFPGA XML bitstream settings to a file

--file <string> or -f <string>

Specify the file name. For example, --file auto_bitstream_setting_echo.xml. See details
about file format at Bitstream Setting (.xml).

--verbose

Show verbose log

read_openfpga_clock_arch

Read the XML file about programmable clock network (see details in Clock Network (.xml))

--file <string> or -f <string>

Specify the file name. For example, --file clock_network.xml

--verbose

Show verbose log

154 Chapter 8. OpenFPGA Shell

OpenFPGA Documentation, Release 1.2.2022

write_openfpga_clock_arch

Write the OpenFPGA programmable clock network to an XML file

--file <string> or -f <string>

Specify the file name. For example, --file clock_network_echo.xml. See details about file
format at Clock Network (.xml).

--verbose

Show verbose log

append_clock_rr_graph

Build the routing resource graph based on an defined programmable clock network, and append it to the existing routing
resource graph built by VPR. Use command openfpga_setup_command_read_openfpga_clock_arch` to load the clock
network.

--verbose

Show verbose log

route_clock_rr_graph

Route clock signals on the built routing resource graph which contains a programmable clock network. Clock signals
will be auto-detected and routed based on pin constraints which are provided by users.

--pin_constraints_file <string> or -pcf <string>

Specify the Pin Constraints File (PCF) when the clock network contains multiple clock pins. For ex-
ample, -pin_constraints_file pin_constraints.xml Strongly recommend for multi-clock
network. See detailed file format about Pin Constraints File (.xml).

--verbose

Show verbose log

link_openfpga_arch

Annotate the OpenFPGA architecture to VPR data base

--activity_file <string>

Specify the signal activity file. For example, --activity_file counter.act. This is required
when users wants OpenFPGA to automatically find the number of clocks in simulations. See details
at Simulation settings.

--sort_gsb_chan_node_in_edges

Sort the edges for the routing tracks in General Switch Blocks (GSBs). Strongly recommand to turn
this on for uniquifying the routing modules

--verbose

Show verbose log

8.3. Commands 155

OpenFPGA Documentation, Release 1.2.2022

write_gsb_to_xml

Write the internal structure of General Switch Blocks (GSBs) across a FPGA fabric, including the inter-
connection between the nodes and node-level details, to XML files

--file <string> or -f <string>

Specify the output directory of the XML files. Each GSB will be written to an indepedent XML file
For example, --file /temp/gsb_output

--unique

Only output unique GSBs to XML files

--exclude_rr_info

Exclude routing resource graph information from output files, e.g., node id as well as other attributes.
This is useful to check the connection inside GSBs purely.

--exclude <string>

Exclude part of the GSB data to be outputted. Can be [sb``|``cbx``|``cby]. Users can exclude
multiple parts by using a splitter ,. For example,

• --exclude sb

• --exclude sb,cbx

--gsb_names <string>

Specify the name of GSB to be outputted. Users can specify multiple GSBs by using a splitter ,.
When specified, only the GSBs whose names match the list will be outputted to files. If not specified,
all the GSBs will be outputted.

Note: When option --unique is enable, the given name of GSBs should match the unique modules!

For example,

• --gsb_names gsb_2__4_,gsb_3__2_

• --gsb_names gsb_2__4_

--verbose

Show verbose log

Note: This command is used to help users to study the difference between GSBs

check_netlist_naming_conflict

Check and correct any naming conflicts in the BLIF netlist This is strongly recommended. Otherwise, the
outputted Verilog netlists may not be compiled successfully.

Warning: This command may be deprecated in future when it is merged to VPR upstream

--fix

Apply fix-up to the names that violate the syntax

156 Chapter 8. OpenFPGA Shell

OpenFPGA Documentation, Release 1.2.2022

--report <string>

Report the naming fix-up to an XML-based log file. For example, --report rename.xml

pb_pin_fixup

Apply fix-up to clustering nets based on routing results

Note: Suggest to skip the similar fix-up applied by VPR through options
--skip_sync_clustering_and_routing_results on when calling vpr in openfpga shell.

Warning: This feature has been integrated into VPR to provide accurate timing analysis results at
post-routing stage. However, this command provides a light fix-up (not as thorough as the one in VPR)
but bring more flexibility in support some architecture without local routing. Suggest to enable it when
your architecture does not have local routing for Look-Up Tables (LUTs) but you want to enable logic
equivalent for input pins of LUTs

Warning: This command may be deprecated in future

--verbose

Show verbose log

lut_truth_table_fixup

Apply fix-up to Look-Up Table truth tables based on packing results

Warning: This command may be deprecated in future when it is merged to VPR upstream

--verbose

Show verbose log

build_fabric

Build the module graph.

--compress_routing

Enable compression on routing architecture modules. Strongly recommend this as it will minimize
the number of routing modules to be outputted. It can reduce the netlist size significantly.

--group_tile <string>

Group fine-grained programmable blocks, connection blocks and switch blocks into tiles. Once en-
abled, tiles will be added to the top-level module. Otherwise, the top-level module consists of pro-
grammable blocks, connection blocks and switch blocks. The tile style can be customized through
a file. See details in Tile Organization (.xml). When enabled, the Verilog netlists will contain addi-
tional netlists that model tiles (see details in Tiles).

8.3. Commands 157

OpenFPGA Documentation, Release 1.2.2022

Warning: This option does not support --duplicate_grid_pin!

Warning: This option requires --compress_routing to be enabled!

--group_config_block

Group configuration memory blocks under each CLB/SB/CB etc. into a centralized configuration
memory blocks, as depicted in Fig. 8.1. When disabled, the configuration memory blocks are placed
in a distributed way under CLB/SB/CB etc. For example, each programming resource, e.g., LUT,
has a dedicated configuration memory block, being placed in the same module. When enabled, as
illustrated in Fig. 8.2, the physical memory block locates under a CLB, driving a number of logical
memory blocks which are close to the programmable resources. The logical memory blocks contain
only pass-through wires which can be optimized out during physical design phase.

Fig. 8.1: Impact on grouping configuable blocks: before and after

--name_module_using_index

Use index in module names, e.g., cbx_2_. This is applied to routing modules, as well as tile modules
when option --group_tile is enabled. If disabled, the module name consist of coordinates, e.g.,
cbx_1__2_.

--duplicate_grid_pin

Enable pin duplication on grid modules. This is optional unless ultra-dense layout generation is
needed

--load_fabric_key <string>

Load an external fabric key from an XML file. For example, --load_fabric_key fpga_2x2.xml
See details in Fabric Key (.xml).

158 Chapter 8. OpenFPGA Shell

OpenFPGA Documentation, Release 1.2.2022

Fig. 8.2: Netlist hierarchy on grouped configuable blocks

--generate_random_fabric_key

Generate a fabric key in a random way

--write_fabric_key <string>.

Output current fabric key to an XML file. For example, --write_fabric_key fpga_2x2.xml See
details in Fabric Key (.xml).

Warning: This option will be deprecated. Use write_fabric_key as a replacement.

--frame_view

Create only frame views of the module graph. When enabled, top-level module will not include any
nets. This option is made for save runtime and memory.

Warning: Recommend to turn the option on when bitstream generation is the only purpose of
the flow. Do not use it when you need generate netlists!

--verbose

Show verbose log

Note: This is a must-run command before launching FPGA-Verilog, FPGA-Bitstream, FPGA-SDC and
FPGA-SPICE

8.3. Commands 159

OpenFPGA Documentation, Release 1.2.2022

write_fabric_key

Output current fabric key to an XML file. For example, write_fabric_key --file fpga_2x2.xml
See details in Fabric Key (.xml).

Note: This command can output module-level keys while the --write_fabric_key option in command
build_fabric does NOT support! Strongly recommend to use this command to obtain fabric key.

--file <string> or -f <string>

Specify the file name. For example, --file fabric_key_echo.xml.

--include_module_keys

Output module-level keys to the file.

--verbose

Show verbose log

add_fpga_core_to_fabric

Add a wrapper module fpga_core as an intermediate layer to FPGA fabric. After this command, the
existing module fpga_top will remain the top-level module while there is a new module fpga_core
under it. Under fpga_core, there will be the detailed building blocks.

--io_naming <string>

This is optional. Specify the I/O naming rules when connecting I/Os of fpga_core module to the
top-level module fpga_top. If not defined, the fpga_top will be the same as fpga_core w.r.t.
ports. See details about the file format of I/O naming rules in Fabric I/O Naming (.xml).

--instance_name <string>

This is optional. Specify the instance name to be used when instanciate the fpga_core module
under the top-level module fpga_top. If not defined, by default it is fpga_core_inst.

--frame_view

Create only frame views of the module graph. When enabled, top-level module will not include any
nets. This option is made for save runtime and memory.

Warning: Recommend to turn the option on when bitstream generation is the only purpose of
the flow. Do not use it when you need generate netlists!

--verbose

Show verbose log

160 Chapter 8. OpenFPGA Shell

OpenFPGA Documentation, Release 1.2.2022

write_fabric_hierarchy

Write the hierarchy of FPGA fabric graph to a plain-text file

--file <string> or -f <string>

Specify the file name to write the hierarchy.

--depth <int>

Specify at which depth of the fabric module graph should the writer stop outputting. The root module
start from depth 0. For example, if you want a two-level hierarchy, you should specify depth as 1.

--verbose

Show verbose log

Note: This file is designed for hierarchical PnR flow, which requires the tree of Multiple-Instanced-Blocks
(MIBs).

write_fabric_io_info

Write the I/O information of FPGA fabric to an XML file

--file <string> or -f <string>

Specify the file name to write the I/O information

--no_time_stamp

Do not print time stamp in output files

--verbose

Show verbose log

Note: This file is designed for pin constraint file conversion.

pcf2place

Convert a Pin Constraint File (.pcf, see details in Pin Constraints File (.pcf)) to a placement file)

--pcf <string>

Specify the path to the users’ pin constraint file

--blif <string>

Specify the path to the users’ post-synthesis netlist

--fpga_io_map <string>

Specify the path to the FPGA I/O location. Achieved by the command write_fabric_io_info

--pin_table <string>

Specify the path to the pin table file, which describes the pin mapping between chip I/Os and FPGA
I/Os. See details in Pin Table File (.csv)

--fpga_fix_pins <string>

Specify the path to the placement file which will be outputted by running this command

8.3. Commands 161

https://docs.verilogtorouting.org/en/latest/vpr/file_formats/#placement-file-format-place

OpenFPGA Documentation, Release 1.2.2022

--pin_table_direction_convention <string>

Specify the naming convention for ports in pin table files from which pin direction can be inferred.
Can be [explicit``|``quicklogic]. When explicit is selected, pin direction is inferred based
on the explicit definition in a column of pin table file, e.g., GPIO direction (see details in Pin Table
File (.csv)). When quicklogic is selected, pin direction is inferred by port name: a port whose
postfix is _A2F is an input, while a port whose postfix is _A2F is an output. By default, it is explicit.

--no_time_stamp

Do not print time stamp in output files

--verbose

Show verbose log

rename_modules

Rename modules of an FPGA fabric with a given set of naming rules

--file <string>

Specify the file path which contain the naming rules. See details in Fabric Module Naming (.xml).

--verbose

Show verbose log

write_module_naming_rules

Output the naming rules for each module of an FPGA fabric to a given file

--file <string>

Specify the file path to be written to

--no_time_stamp

Do not print time stamp in output files

--verbose

Show verbose log

write_fabric_pin_physical_location

Output the physical location of each pin for each module of an FPGA fabric to a given file

--file <string>

Specify the file path to be written to. See details in Fabric Pin Physical Location File (.xml).

--module <string>

Specify the name of modules to be considered. Support regular expression, e.g., tile*. When
provided, only pins of selected modules will be outputted. By default, a wildcard * is considered,
which means all the modules will be considered.

--show_invalid_side

Show sides for each pin, even these pin does not have a specific valid side. This is mainly used for
debugging.

--no_time_stamp

Do not print time stamp in output files

162 Chapter 8. OpenFPGA Shell

OpenFPGA Documentation, Release 1.2.2022

--verbose

Show verbose log

8.3.4 FPGA-Bitstream

repack

Repack the netlist to physical pbs Repack is an essential procedure before building a bitstream, which aims to packing
each programmable blocks by considering only the physical modes. Repack’s functionality are in the following aspects:

• It annotates the net mapping results from operating modes (considered by VPR) to the physical modes (considered
by OpenFPGA)

• It re-routes all the nets by considering the programmable interconnects in physical modes only.

Note: This must be done before bitstream generator and testbench generation. Strongly recommend it is done
after all the fix-up have been applied

--design_constraints

Apply design constraints from an external file. Normally, repack takes the net mapping from VPR packing
and routing results. Alternatively, repack can accept the design constraints, in particular, net remapping,
from an XML-based design constraint description. See details in Repack Design Constraints (.xml).

Warning: Design constraints are designed to help repacker to identify which clock net to be mapped to
which pin, so that multi-clock benchmarks can be correctly implemented, in the case that VPR may not have
sufficient vision on clock net mapping. Try not to use design constraints to remap any other types of
nets!!!

--ignore_global_nets_on_pins

Specify the mapping results of global nets should be ignored on which pins of a pb_type. For example,
--ignore_global_nets_on_pins clb.I[0:11]. Once specified, the mapping results on the pins for
all the global nets, such as clock, reset etc., are ignored. Routing traces will be appeneded to other pins
where the same global nets are mapped to.

Note:
– This option is designed for global nets which are applied to both data path and global networks. For example,

a reset signal is mapped to both a LUT input and the reset pin of a FF. Suggest not to use the option in other
purposes!

– For repack options, the constraints specified by --ignore_global_nets_on_pins have higher priority
than those set by ignore_net. When the constraints from --ignore_global_nets_on_pins are sat-
isfied, those from ignore_net will not be checked. For more information on ignore_net, see Repack
Design Constraints (.xml).

Warning: Users must specify the size/width of the pin. Currently, OpenFPGA cannot infer the pin size
from the architecture!!!

8.3. Commands 163

OpenFPGA Documentation, Release 1.2.2022

--verbose

Show verbose log

build_architecture_bitstream

Decode VPR implementing results to an fabric-independent bitstream database

--read_file <string>

Read the fabric-independent bitstream from an XML file. When this is enabled, bitstream generation
will NOT consider VPR results. See details at Architecture Bitstream (.xml).

--write_file <string>

Output the fabric-independent bitstream to an XML file. See details at Architecture Bitstream (.xml).

--no_time_stamp

Do not print time stamp in bitstream files

--verbose

Show verbose log

build_fabric_bitstream

Build a sequence for every configuration bits in the bitstream database for a specific FPGA fabric

--verbose

Show verbose log

write_fabric_bitstream

Output the fabric bitstream database to a specific file format

--file <string> or -f <string>

Output the fabric bitstream to an plain text file (only 0 or 1)

--format <string>

Specify the file format [plain_text | xml]. By default is plain_text. See file formats in XML
(.xml) and Plain text (.bit).

--filter_value <int>

Warning: Value filter is only applicable to XML file format!

Specify the value to be keep in the bitstream file. Can be [0 | 1]. By default is none, which means
no filter is applied. When specified, only the bit with the filter value is written to the file. See file
formats in XML (.xml).

--path_only

Warning: This is only applicable to XML file format!

164 Chapter 8. OpenFPGA Shell

OpenFPGA Documentation, Release 1.2.2022

Specify that only the path attribute is kept in the bitstream file. By default is off. When specified,
only the path attribute is written to the file. Regarding the path attribute, See file formats in XML
(.xml).

--value_only

Warning: This is only applicable to XML file format!

Specify that only the value attribute is kept in the bitstream file. By default is off. When specified,
only the value attribute is written to the file. Regarding the value attribute, see file formats in XML
(.xml).

--trim_path

Warning: This is only applicable to XML file format!

Warning: This is an option for power user! Suggest only to use when you enable the
--group_config_block option when building a fabric (See details in build_fabric).

Specify that the path will be trimed by 1 level in resulting bitstream file. By default is off.
When specified, the hierarchy of path will be reduced by 1. For example, the original path
is fpga_top.tile_1__1_.config_block.sub_mem.mem_out[0], the path after trimming is
fpga_top.tile_1__1_.config_block.mem_out[0]. Regarding the path attribute, see file for-
mats in XML (.xml).

--fast_configuration

Reduce the bitstream size when outputing by skipping dummy configuration bits. It is applicable to
configuration chain, memory bank and frame-based configuration protocols. For configuration chain,
when enabled, the zeros at the head of the bitstream will be skipped. For memory bank and frame-
based, when enabled, all the zero configuration bits will be skipped. So ensure that your memory
cells can be correctly reset to zero with a reset signal.

Warning: Fast configuration is only applicable to plain text file format!

Note: If both reset and set ports are defined in the circuit modeling for programming, OpenFPGA
will pick the one that will bring largest benefit in speeding up configuration.

--keep_dont_care_bits

Keep don’t care bits (x) in the outputted bitstream file. This is only applicable to plain text file format.
If not enabled, the don’t care bits are converted to either logic 0 or 1.

--no_time_stamp

Do not print time stamp in bitstream files

--verbose

Show verbose log

8.3. Commands 165

OpenFPGA Documentation, Release 1.2.2022

write_io_mapping

Output the I/O mapping information to a file

--file <string> or -f <string>

Specify the file name where the I/O mapping will be outputted to. See file formats in I/O Mapping
File (.xml).

--no_time_stamp

Do not print time stamp in bitstream files

--verbose

Show verbose log

report_bitstream_distribution

Output the bitstream distribution to a file

--file <string> or -f <string>

Specify the file name where the bitstream distribution will be outputted to. See file formats in Bit-
stream Distribution File (.xml).

--depth <int> or -d <int>

Specify the maximum depth of the block which should appear in the block

--no_time_stamp

Do not print time stamp in bitstream files

--verbose

Show verbose log

8.3.5 FPGA-Verilog

write_fabric_verilog

Write the Verilog netlist for FPGA fabric based on module graph. See details in Fabric Netlists.

--file <string> or -f <string>

Specify the output directory for the Verilog netlists. For example, --file /temp/
fabric_netlist/

--default_net_type <string>

Specify the default net type for the Verilog netlists. Currently, supported types are none and wire.
Default value: none.

--explicit_port_mapping

Use explicit port mapping when writing the Verilog netlists

--include_timing

Output timing information to Verilog netlists for primitive modules

--use_relative_path

Force to use relative path in netlists when including other netlists. By default, this is off, which means
that netlists use absolute paths when including other netlists

166 Chapter 8. OpenFPGA Shell

OpenFPGA Documentation, Release 1.2.2022

--print_user_defined_template

Output a template Verilog netlist for all the user-defined circuit models in Circuit Library. This
aims to help engineers to check what is the port sequence required by top-level Verilog netlists

--no_time_stamp

Do not print time stamp in Verilog netlists

--verbose

Show verbose log

write_full_testbench

Write the full testbench for FPGA fabric in Verilog format. See details in Testbench.

--file <string> or -f <string>

The output directory for all the testbench netlists. We suggest the use of same output directory as
fabric Verilog netlists. For example, --file /temp/testbench

--dut_module <string>

Specify the name of Design Under Test (DUT) module to be considered in the testbench. Can be
either fpga_top or fpga_core. By default, it is ``fpga_top.

Note: Please use the reserved words fpga_top or fpga_core even when renaming is applied to the
modules (See details in rename_modules). Renaming will be applied automatically.

--bitstream <string>

The bitstream file to be loaded to the full testbench, which should be in the same file format that
OpenFPGA can outputs (See detailes in Plain text (.bit)). For example, --bitstream and2.bit

--simulator <string>

Specify the type of simulator which the full testbench will be used for. Currently support iverilog
| vcs. By default, assume the simulator is iverilog. For example, --simulator iverilog. For
different types of simulator, some syntax in the testbench may differ to help fast convergence.

--fabric_netlist_file_path <string>

Specify the fabric Verilog file if they are not in the same directory as the testbenches to be generated.
If not specified, OpenFPGA will assume that the fabric netlists are the in the same directory as
testbenches and assign default names. For example, --file /temp/fabric/fabric_netlists.
v

--reference_benchmark_file_path <string>

Specify the reference benchmark Verilog file if you want to output any self-checking
testbench. For example, --reference_benchmark_file_path /temp/benchmark/
counter_post_synthesis.v

Note: If not specified, the testbench will not include any self-checking feature!

--pin_constraints_file <string> or -pcf <string>

Specify the Pin Constraints File (PCF) if you want to custom stimulus in testbenches. For example,
-pin_constraints_file pin_constraints.xml Strongly recommend for multi-clock simula-
tions. See detailed file format about Pin Constraints File (.xml).

8.3. Commands 167

OpenFPGA Documentation, Release 1.2.2022

--bus_group_file <string> or -bgf <string>

Specify the Bus Group File (BGF) if you want to group pins to buses. For example, -bgf
bus_group.xml Strongly recommend when input HDL contains bus ports. See detailed file for-
mat about Bus Group File (.xml).

--fast_configuration

Enable fast configuration phase for the top-level testbench in order to reduce runtime of simulations.
It is applicable to configuration chain, memory bank and frame-based configuration protocols. For
configuration chain, when enabled, the zeros at the head of the bitstream will be skipped. For memory
bank and frame-based, when enabled, all the zero configuration bits will be skipped. So ensure that
your memory cells can be correctly reset to zero with a reset signal.

Note: If both reset and set ports are defined in the circuit modeling for programming, OpenFPGA
will pick the one that will bring largest benefit in speeding up configuration.

--explicit_port_mapping

Use explicit port mapping when writing the Verilog netlists

--default_net_type <string>

Specify the default net type for the Verilog netlists. Currently, supported types are none and wire.
Default value: none.

--include_signal_init

Output signal initialization to Verilog testbench to smooth convergence in HDL simulation

Note: We strongly recommend users to turn on this flag as it can help simulators to con-
verge quickly.

Warning: Signal initialization is only applied to the datapath inputs of routing multiplexers
(considering the fact that they are indispensible cells of FPGAs)! If your FPGA does not contain
any multiplexer cells, signal initialization is not applicable.

--no_time_stamp

Do not print time stamp in Verilog netlists

--use_relative_path

Force to use relative path in netlists when including other netlists. By default, this is off, which means
that netlists use absolute paths when including other netlists

--verbose

Show verbose log

168 Chapter 8. OpenFPGA Shell

OpenFPGA Documentation, Release 1.2.2022

write_preconfigured_fabric_wrapper

Write the Verilog wrapper for a preconfigured FPGA fabric. See details in Testbench.

--file <string> or -f <string>

The output directory for the netlists. We suggest the use of same output directory as fabric Verilog
netlists. For example, --file /temp/testbench

--fabric_netlist_file_path <string>

Specify the fabric Verilog file if they are not in the same directory as the testbenches to be generated.
If not specified, OpenFPGA will assume that the fabric netlists are the in the same directory as
testbenches and assign default names. For example, --file /temp/fabric/fabric_netlists.
v

--dut_module <string>

Specify the name of Design Under Test (DUT) module to be considered in the testbench. Can be
either fpga_top or fpga_core. By default, it is ``fpga_top.

Note: Please use the reserved words fpga_top or fpga_core even when renaming is applied to the
modules (See details in rename_modules). Renaming will be applied automatically.

--pin_constraints_file <string> or -pcf <string>

Specify the Pin Constraints File (PCF) if you want to custom stimulus in testbenches. For example,
-pin_constraints_file pin_constraints.xml Strongly recommend for multi-clock simula-
tions. See detailed file format about Pin Constraints File (.xml).

--bus_group_file <string> or -bgf <string>

Specify the Bus Group File (BGF) if you want to group pins to buses. For example, -bgf
bus_group.xml Strongly recommend when input HDL contains bus ports. See detailed file for-
mat about Bus Group File (.xml).

--explicit_port_mapping

Use explicit port mapping when writing the Verilog netlists

--default_net_type <string>

Specify the default net type for the Verilog netlists. Currently, supported types are none and wire.
Default value: none.

--embed_bitstream <string>

Specify if the bitstream should be embedded to the Verilog netlists in HDL codes. Available
options are none, iverilog and modelsim. Default value: modelsim.

Warning: If the option none is selected, bitstream will not be embedded. Users should
force the bitstream through HDL simulator commands. Otherwise, functionality of the
wrapper netlist is wrong!

Warning: Please specify iverilog if you are using icarus iVerilog simulator.

--include_signal_init

8.3. Commands 169

OpenFPGA Documentation, Release 1.2.2022

Output signal initialization to Verilog testbench to smooth convergence in HDL simulation

Note: We strongly recommend users to turn on this flag as it can help simulators to con-
verge quickly.

Warning: Signal initialization is only applied to the datapath inputs of routing multiplexers
(considering the fact that they are indispensible cells of FPGAs)! If your FPGA does not contain
any multiplexer cells, signal initialization is not applicable.

--dump_waveform

Enable waveform output when runnign HDL simulation on the preconfigured wrapper. When en-
abled, waveform files can be outputted in two formats: fsdb and vcd through preprocessing flags
DUMP_FSDB and DUMP_VCD respectively. For example, when using VCS,. the flag can be activiated
by +define+DUMP_FSDB=1.

--no_time_stamp

Do not print time stamp in Verilog netlists

--verbose

Show verbose log

write_testbench_template

Write a template of testbench for a preconfigured FPGA fabric. See details in Testbench.

Warning: The template testbench only contains an instance of FPGA fabric. Please do NOT directly
use it in design verification without a proper modification!!!

--file <string> or -f <string>

The file path to output the testbench file. For example, --file /temp/testbench_template.v

--top_module <string>

Specify the name of top-level module to be considered in the testbench. Please avoid reserved words,
i.e., fpga_top or fpga_core. By default, it is ``top_tb.

Note: Please use the reserved words fpga_top or fpga_core even when renaming is applied to the
modules (See details in rename_modules). Renaming will be applied automatically.

--dut_module <string>

Specify the name of Design Under Test (DUT) module to be considered in the testbench. Can be
either fpga_top or fpga_core. By default, it is ``fpga_top.

Note: Please use the reserved words fpga_top or fpga_core even when renaming is applied to the
modules (See details in rename_modules). Renaming will be applied automatically.

--explicit_port_mapping

Use explicit port mapping when writing the Verilog netlists

170 Chapter 8. OpenFPGA Shell

OpenFPGA Documentation, Release 1.2.2022

--default_net_type <string>

Specify the default net type for the Verilog netlists. Currently, supported types are none and wire.
Default value: none.

--no_time_stamp

Do not print time stamp in Verilog netlists

--verbose

Show verbose log

write_testbench_io_connection

Write the I/O connection statements in Verilog for a preconfigured FPGA fabric mapped to a given design.
See details in Testbench.

Warning: The netlist may be included by the template testbench (see details in
write_testbench_template). Please do NOT directly use it in design verification without a proper
modification!!!

--file <string> or -f <string>

The file path to output the netlist file. For example, --file /temp/testbench_io_conkt.v

--dut_module <string>

Specify the name of Design Under Test (DUT) module to be considered in the testbench. Can be
either fpga_top or fpga_core. By default, it is ``fpga_top.

Note: Please use the reserved words fpga_top or fpga_core even when renaming is applied to the
modules (See details in rename_modules). Renaming will be applied automatically.

--pin_constraints_file <string> or -pcf <string>

Specify the Pin Constraints File (PCF) if you want to custom stimulus in testbenches. For example,
-pin_constraints_file pin_constraints.xml Strongly recommend for multi-clock simula-
tions. See detailed file format about Pin Constraints File (.xml).

--bus_group_file <string> or -bgf <string>

Specify the Bus Group File (BGF) if you want to group pins to buses. For example, -bgf
bus_group.xml Strongly recommend when input HDL contains bus ports. See detailed file for-
mat about Bus Group File (.xml).

--no_time_stamp

Do not print time stamp in Verilog netlists

--verbose

Show verbose log

8.3. Commands 171

OpenFPGA Documentation, Release 1.2.2022

write_mock_fpga_wrapper

Write the Verilog wrapper which mockes a mapped FPGA fabric. See details in Mock FPGA Wrapper.

--file <string> or -f <string>

The output directory for the netlists. We suggest the use of same output directory as fabric Verilog
netlists. For example, --file /temp/testbench

--top_module <string>

Specify the name of top-level module to be considered in the wrapper. Can be either fpga_top or
fpga_core. By default, it is ``fpga_top.

--pin_constraints_file <string> or -pcf <string>

Specify the Pin Constraints File (PCF) if you want to custom stimulus in testbenches. For example,
-pin_constraints_file pin_constraints.xml Strongly recommend for multi-clock simula-
tions. See detailed file format about Pin Constraints File (.xml).

--bus_group_file <string> or -bgf <string>

Specify the Bus Group File (BGF) if you want to group pins to buses. For example, -bgf
bus_group.xml Strongly recommend when input HDL contains bus ports. See detailed file for-
mat about Bus Group File (.xml).

--explicit_port_mapping

Use explicit port mapping when writing the Verilog netlists

--use_relative_path

Force to use relative path in netlists when including other netlists. By default, this is off, which means
that netlists use absolute paths when including other netlists

--default_net_type <string>

Specify the default net type for the Verilog netlists. Currently, supported types are none and wire.
Default value: none.

--no_time_stamp

Do not print time stamp in Verilog netlists

--verbose

Show verbose log

write_preconfigured_testbench

Write the Verilog testbench for a preconfigured FPGA fabric. See details in Testbench.

--file <string> or -f <string>

The output directory for all the testbench netlists. We suggest the use of same output directory as
fabric Verilog netlists. For example, --file /temp/testbench

--fabric_netlist_file_path <string>

Specify the fabric Verilog file if they are not in the same directory as the testbenches to be generated.
If not specified, OpenFPGA will assume that the fabric netlists are the in the same directory as
testbenches and assign default names. For example, --file /temp/fabric/fabric_netlists.
v

172 Chapter 8. OpenFPGA Shell

OpenFPGA Documentation, Release 1.2.2022

--reference_benchmark_file_path <string>

Specify the reference benchmark Verilog file if you want to output any self-checking
testbench. For example, --reference_benchmark_file_path /temp/benchmark/
counter_post_synthesis.v

Note: If not specified, the testbench will not include any self-checking feature!

--pin_constraints_file <string> or -pcf <string>

Specify the Pin Constraints File (PCF) if you want to custom stimulus in testbenches. For example,
-pin_constraints_file pin_constraints.xml Strongly recommend for multi-clock simula-
tions. See detailed file format about Pin Constraints File (.xml).

--bus_group_file <string> or -bgf <string>

Specify the Bus Group File (BGF) if you want to group pins to buses. For example, -bgf
bus_group.xml Strongly recommend when input HDL contains bus ports. See detailed file for-
mat about Bus Group File (.xml).

--explicit_port_mapping

Use explicit port mapping when writing the Verilog netlists

--default_net_type <string>

Specify the default net type for the Verilog netlists. Currently, supported types are none and wire.
Default value: none.

--no_time_stamp

Do not print time stamp in Verilog netlists

--use_relative_path

Force to use relative path in netlists when including other netlists. By default, this is off, which means
that netlists use absolute paths when including other netlists

--verbose

Show verbose log

write_simulation_task_info

Write an interchangeable file in .ini format to interface HDL simulators, such as iVerilog and Modelsim.

--file <string> or -f <string>

Specify the file path to output simulation-related information. For example, --file simulation.
ini

--hdl_dir <string>

Specify the directory path where HDL netlists are created. For example, --hdl_dir ./SRC

--reference_benchmark_file_path <string>

Must specify the reference benchmark Verilog file if you want to output any testbenches. For example,
--reference_benchmark_file_path /temp/benchmark/counter_post_synthesis.v

--testbench_type <string>

Specify the type of testbenches [preconfigured_testbench``|``full_testbench]. By de-
fault, it is the preconfigured_testbench.

8.3. Commands 173

OpenFPGA Documentation, Release 1.2.2022

--time_unit <string>

Specify a time unit to be used in SDC files. Acceptable values are string: as | fs | ps | ns | us | ms |
ks | Ms. By default, we will consider second (ms).

--verbose

Show verbose log

8.3.6 FPGA-SDC

write_pnr_sdc

Write the SDC files for PnR backend

--file <string> or -f <string>

Specify the output directory for SDC files For example, --file /temp/pnr_sdc

--hierarchical

Output SDC files without full path in hierarchy

--flatten_names

Use flatten names (no wildcards) in SDC files

--time_unit <string>

Specify a time unit to be used in SDC files. Acceptable values are string: as | fs | ps | ns | us | ms |
ks | Ms. By default, we will consider second (s).

--output_hierarchy

Output hierarchy of Multiple-Instance-Blocks(MIBs) to plain text file. This is applied to constrain
timing for grids, Switch Blocks and Connection Blocks.

Note: Valid only when compress_routing is enabled in build_fabric

--constrain_global_port

Constrain all the global ports of FPGA fabric.

--constrain_non_clock_global_port

Constrain all the non-clock global ports as clocks ports of FPGA fabric

Note: constrain_global_port will treat these global ports in Clock Tree Synthe-
sis (CTS), in purpose of balancing the delay to each sink. Be carefull to enable
constrain_non_clock_global_port, this may significanly increase the runtime of CTS as it is
supposed to be routed before any other nets. This may cause routing congestion as well.

--constrain_grid

Constrain all the grids of FPGA fabric

--constrain_sb

Constrain all the switch blocks of FPGA fabric

--constrain_cb

Constrain all the connection blocks of FPGA fabric

174 Chapter 8. OpenFPGA Shell

OpenFPGA Documentation, Release 1.2.2022

--constrain_configurable_memory_outputs

Constrain all the outputs of configurable memories of FPGA fabric

--constrain_routing_multiplexer_outputs

Constrain all the outputs of routing multiplexer of FPGA fabric

--constrain_switch_block_outputs

Constrain all the outputs of switch blocks of FPGA fabric

--constrain_zero_delay_paths

Constrain all the zero-delay paths in FPGA fabric

Note: Zero-delay path may cause errors in some PnR tools as it is considered illegal

--verbose

Enable verbose output

write_configuration_chain_sdc

Write the SDC file to constrain the timing for configuration chain. The timing constraints will always start
from the first output (Q) of a Configuration Chain Flip-flop (CCFF) and ends at the inputs of the next CCFF
in the chain. Note that Qb of CCFF will not be constrained!

--file <string> or -f <string>

Specify the output SDC file. For example, --file cc_chain.sdc

--time_unit <string>

Specify a time unit to be used in SDC files. Acceptable values are string: as | fs | ps | ns | us | ms |
ks | Ms. By default, we will consider second (s).

--max_delay <float>

Specify the maximum delay to be used. The timing value should follow the time unit defined in this
command.

--min_delay <float>

Specify the minimum delay to be used. The timing value should follow the time unit defined in this
command.

Note: Only applicable when configuration chain is used as configuration protocol

write_sdc_disable_timing_configure_ports

Write the SDC file to disable timing for configure ports of programmable modules. The SDC aims to break
the combinational loops across FPGAs and avoid false path timing to be visible to timing analyzers

--file <string> or -f <string>

Specify the output SDC file. For example, --file disable_config_timing.sdc.

--flatten_names

Use flatten names (no wildcards) in SDC files

--verbose

Show verbose log

8.3. Commands 175

OpenFPGA Documentation, Release 1.2.2022

write_analysis_sdc

Write the SDC to run timing analysis for a mapped FPGA fabric

--file <string> or -f <string>

Specify the output directory for SDC files. For example, --file counter_sta_analysis.sdc

--flatten_names

Use flatten names (no wildcards) in SDC files

--time_unit <string>

Specify a time unit to be used in SDC files. Acceptable values are string: as | fs | ps | ns | us | ms |
ks | Ms. By default, we will consider second (s).

176 Chapter 8. OpenFPGA Shell

CHAPTER

NINE

FPGA-SPICE

Warning: FPGA-SPICE has not been integrated to VPR8 version yet. Please the following tool guide is for VPR7
version now

9.1 Command-line Options

All the command line options of FPGA-SPICE can be shown by calling the help menu of VPR. Here are all the FPGA-
SPICE-related options that you can find:

FPGA-SPICE Supported Options:

--fpga_spice
--fpga_spice_dir <directory_path_output_spice_netlists>
--fpga_spice_print_top_testbench
--fpga_spice_print_lut_testbench
--fpga_spice_print_hardlogic_testbench
--fpga_spice_print_pb_mux_testbench
--fpga_spice_print_cb_mux_testbench
--fpga_spice_print_sb_mux_testbench
--fpga_spice_print_cb_testbench
--fpga_spice_print_sb_testbench
--fpga_spice_print_grid_testbench
--fpga_spice_rename_illegal_port
--fpga_spice_signal_density_weight <float>
--fpga_spice_sim_window_size <float>
--fpga_spice_leakage_only
--fpga_spice_parasitic_net_estimation_off
--fpga_spice_testbench_load_extraction_off
--fpga_spice_sim_mt_num <int>

Note: FPGA-SPICE requires the input of activity estimation results (*.act file) from ACE2. Remember to use the
option –activity_file <act_file> to read the activity file.

Note: To dump full-chip-level testbenches, the option –-fpga_spice_print_top_testbench should be enabled.

Note: To dump grid-level testbenches, the options – fpga_spice_print_grid_testbench, –

177

OpenFPGA Documentation, Release 1.2.2022

fpga_spice_print_cb_testbench and – fpga_spice_print_sb_testbench should be enabled.

Note: To dump component-level testbenches, the options –fpga_spice_print_lut_testbench,
–fpga_spice_print_hardlogic_testbench, –fpga_spice_print_pb_mux_testbench, –fpga_spice_print_cb_mux_testbench
and –fpga_spice_print_sb_mux_testbench should be enabled.

Table 9.1: Command-line Options of FPGA-SPICE
Command Options Description
–fpga_spice Turn on the FPGA-SPICE.
–fpga_spice_dir <dir_path> Specify the directory that all the SPICE netlists will be outputted

to. <dir_path> is the destination directory.
–fpga_spice_print_top_testbench Print the full-chip-level testbench for the FPGA.
–fpga_spice_print_lut_testbench Print the testbenches for all the LUTs.
–fpga_spice_print_hardlogic_testbench Print the test benches for all the hard logic.
–fpga_spice_print_pb_mux_testbench Print the testbenches for all the multiplexers in the logic blocks.
–fpga_spice_print_cb_mux_testbench Print the testbenches for all the multiplexers in Connection

Boxes.
– fpga_spice_print_sb_mux_testbench Print the testbenches for all the multiplexers in Switch Blocks.
–fpga_spice_print_cb_testbench Print the testbenches for all the CBs.
–fpga_spice_print_sb_testbench Print the testbenches for all the SBs.
–fpga_spice_print_grid_testbench Print the testbenches for the logic blocks.
–fpga_spice_rename_illegal_port Rename illegal port names
–fpga_spice_signal_density_weight <float> Set the weight of signal density.
–fpga_spice_sim_window_size <float> Set the window size in determining the number of clock cycles

in simulation.
–fpga_spice_leakage_only FPGA-SPICE conduct power analysis on the leakage power only.
–fpga_spice_parasitic_net_estimation_off Turn off the parasitic net estimation technique.
–fpga_spice_testbench_load_extraction_off Turn off the load effect on net estimation technique.
–fpga_spice_sim_mt_num <int> Set the number of multi-thread used in simulation

Note: The parasitic net estimation technique is used to analyze the parasitic net activities which improve the accuracy
of power analysis. When turned off, the errors between the full-chip-level and grid/component-level testbenches will
increase.”

9.2 Hierarchy of SPICE Output Files

All the generated SPICE netlists are located in the <spice_dir> as you specify in the command-line options. Un-
der the <spice_dir>, FPGA-SPICE creates a number of folders: include, subckt, lut_tb, dff_tb, grid_tb, pb_mux_tb,
cb_mux_tb, sb_mux_tb, top_tb, results. Under the <spice_dir>, FPGA-SPICE also creates a shell script called
run_hspice_sim.sh, which run all the simulations for all the testbenches. The folders contain the sub-circuits and
testbenches, and their contents are shown as follows.

178 Chapter 9. FPGA-SPICE

OpenFPGA Documentation, Release 1.2.2022

Table 9.2: Folder hierarchy of FPGA-SPICE
Folder Content
includes The header files which contain the parameters for stimuli and measurement,

as defined in <tech_lib>.
subckt Contain all the auto-generated sub-circuits, such as inverters, buffers, trans-

mission gates, multiplexers, LUTs, and even logic blocks, connection boxes,
and switch blocks.

lut_tb Contain all the testbenches for LUTs. This folder is created only when option
print_spice_lut_testbench is enabled.

dff_tb Contain all the testbenches for FFs. This folder is created only when option
print_spice_dff_testbench is enabled.

grid_tb Contain all the testbenches for logic blocks (grid-level testbenches). This
folder is created only when option print_spice_grid_testbench is enabled.

pb_mux_tb Contain the testbenches for the multiplexers inside logic blocks. This folder
is created only when option print_spice_pbmux_test-bench is enabled.

cb_mux_tb Contain all the testbenches for the multiplexers inside connection boxes.
This folder is created only when option print_spice_cbmux_testbench is en-
abled.

sb_mux_tb Contain all the testbenches for the multiplexers inside switch blocks. This
folder is created only when option print_spice_sbmux_test-bench is enabled.

top_tb Contain the full-chip-level testbench. This folder is created only when option
print_spice_top_testbench is enabled.

results An empty folder when created. It stores all the simulation results by running
the shell script run_hspice_sim.sh.

9.3 Run SPICE simulation

• Simulation results

The HSPICE simulator creates an LIS file (*.lis) to store the results. In each LIS file, you can find the leakage power
and dynamic power of each module, as well the total leakage power and the total dynamic power of all the modules in
a SPICE netlist.

The following is an example of simulation results of a pb_mux testbench.:

total_leakage_srams= -16.4425u

total_dynamic_srams= 83.0480u

total_energy_per_cycle_srams= 269.7773f

total_leakage_power_mux[0to76]=-140.1750u

total_energy_per_cycle_mux[0to76]= -37.5871p

total_leakage_power_pb_mux=-140.1750u

total_energy_per_cycle_pb_mux= -37.5871p

Note: total_energy_per_cycle_srams represents the total energy per cycle of all the SRAMs of the multiplexers in this
testbench, while total_energy_per_cycle_pb_mux is the total energy per cycle of all the multiplexer structures in this

9.3. Run SPICE simulation 179

OpenFPGA Documentation, Release 1.2.2022

testbench.

Therefore, the total energy per cycle of all the multiplexers in this testbench should be the sum of to-
tal_energy_per_cycle_srams and total_energy_per_cycle_pb_mux.

Similarly, the total leakage power of all the multiplexers in this testbench should be the sum of total_leakage_srams
and total_leakage_power_pb_mux.

The leakage power is measured for the first clock cycle, where FPGA-SPICE set all the voltage stimuli in constant
voltage levels.

The total energy per cycle is measured for the rest of clock cycles (the 1st clock cycle is not included).

The total power can be calculated by,

𝑡𝑜𝑡𝑎𝑙_𝑒𝑛𝑒𝑟𝑔𝑦_𝑝𝑒𝑟_𝑐𝑦𝑐𝑙𝑒 · 𝑐𝑙𝑜𝑐𝑘_𝑓𝑟𝑒𝑞

where clock_freq is the clock frequency used in SPICE simulations.

9.4 Create Customized SPICE Modules

To make sure the customized SPICE netlists can be correctly included in FPGA-SPICE, the following rules should be
fully respected:

1. The customized SPICE netlists could contain multiple sub-circuits but the names of these sub-circuits should not be
conflicted with any reserved words.. Here is an example of defining a sub-circuit in SPICE netlists. The <subckt_name>
should be a unique one, which should not be conflicted with any reserved words. .subckt <subckt_name> <ports>

2. The ports of sub-circuit to be included should strictly follow the sequence: <input_ports> <output_ports>
<sram_ports> <clock_ports> <vdd> <gnd> It is not necessary to keep the names of ports be the same with what is
defined in the SPICE models. But the bandwidth of the ports should be consistent with what is defined in the Circuit
models.

Note: If the customized SPICE netlists include inverters, buffers or transmission gates, it is recommended to use those
auto-generated by FPGA-SPICE. It is also recommended to use the transistor sub-circuit (vpr_nmos and vpr_pmos)
auto-generated by FPGA-SPICE. In the appendix, we introduce how to use these useful sub-circuits.

180 Chapter 9. FPGA-SPICE

CHAPTER

TEN

FPGA-VERILOG

10.1 Fabric Netlists

In this part, we will introduce the hierarchy, dependency and functionality of each Verilog netlist, which are generated
to model the FPGA fabric.

Note: These netlists are automatically generated by the OpenFPGA command write_fabric_verilog. See FPGA-
Verilog for its detailed usage.

All the generated Verilog netlists are located in the directory as you specify in the OpenFPGA command
write_fabric_verilog. Inside the directory, the Verilog netlists are organized as illustrated in Fig. 10.1.

Fig. 10.1: Hierarchy of Verilog netlists modeling a FPGA fabric

181

OpenFPGA Documentation, Release 1.2.2022

Fig. 10.2: An illustrative FPGA fabric modelled by the Verilog netlists

182 Chapter 10. FPGA-Verilog

OpenFPGA Documentation, Release 1.2.2022

10.1.1 Top-level Netlists

fabric_netlists.v

This file includes all the related Verilog netlists that are used by the fpga_top.v. This file is created to simplify
the netlist addition for HDL simulator and backend tools. This is the only file you need to add to a simulator or
backend project.

Note: User-defined (external) Verilog netlists are included in this file.

fpga_top.v

This netlist contains the top-level module of the fpga fabric, corresponding to the fabric shown in Fig. 10.2.

fpga_defines.v

This file includes pre-processing flags required by the fpga_top.v, to smooth HDL simulation. It will include
the folliwng pre-procesing flags:

• `define ENABLE_TIMING When enabled, all the delay values defined in primitive Verilog modules will
be considered in compilation. This flag is added when --include_timing option is enabled when calling
the write_fabric_verilog command.

Note: We strongly recommend users to turn on this flag as it can help simulators to converge quickly.

10.1.2 Tiles

This sub-directory contains all the tile-level modules. Only seen when the --group_tile option is enabled when
calling command build_fabric. Each tile groups a number of programmable blocks (Logic Blocks) and routing blocks
(Routing Blocks), as depicted in Fig. 10.2. Tiles are instanciated under the top-level module (Top-level Netlists).

tile_<x>__<y>_.v

For each unique tile, a Verilog netlist will be generated. The <x> and <y> denote the coordinate of the tile in the
FPGA fabric.

10.1.3 Logic Blocks

This sub-directory contains all the Verilog modules modeling configurable logic blocks, heterogeneous blocks as well
as I/O blocks. Take the example in Fig. 10.2, the modules are CLBs, DSP blocks, I/Os and Block RAMs.

<physical_tile_name>.v

For each <physical_tile> defined in the VPR architecture description, a Verilog netlist will be generated to
model its internal structure.

Note: For I/O blocks, separated <physical_tile_name>.v will be generated for each side of a FPGA fabric.

<logical_tile_name>.v

For each root pb_type defined in the <complexblock> of VPR architecture description, a Verilog netlist will
be generated to model its internal structure.

10.1. Fabric Netlists 183

OpenFPGA Documentation, Release 1.2.2022

10.1.4 Routing Blocks

This sub-directory contains all the Verilog modules modeling Switch Blocks (SBs) and Connection Blocks (CBs). Take
the example in Fig. 10.2, the modules are the Switch Blocks, X- and Y- Connection Blocks of a tile.

sb_<x>_<y>.v

For each unique Switch Block (SB) created by VPR routing resource graph generator, a Verilog netlist will be
generated. The <x> and <y> denote the coordinate of the Switch Block in the FPGA fabric.

cbx_<x>_<y>.v

For each unique X-direction Connection Block (CBX) created by VPR routing resource graph generator, a Verilog
netlist will be generated. The <x> and <y> denote the coordinate of the Connection Block in the FPGA fabric.

cby_<x>_<y>.v

For each unique Y-direction Connection Block (CBY) created by VPR routing resource graph generator, a Verilog
netlist will be generated. The <x> and <y> denote the coordinate of the Connection Block in the FPGA fabric.

10.1.5 Primitive Modules

This sub-directory contains all the primitive Verilog modules, which are used to build the logic blocks and routing
blocks.

luts.v

Verilog modules for all the Look-Up Tables (LUTs), which are defined as <circuit_model name="lut"> of
OpenFPGA architecture description. See details in Circuit Library.

wires.v

Verilog modules for all the routing wires, which are defined as <circuit_model name="wire|chan_wire">
of OpenFPGA architecture description. See details in Circuit Library.

memories.v

Verilog modules for all the configurable memories, which are defined as <circuit_model
name="ccff|sram"> of OpenFPGA architecture description. See details in Circuit Library.

muxes.v

Verilog modules for all the routing multiplexers, which are defined as <circuit_model name="mux"> of
OpenFPGA architecture description. See details in Circuit Library.

Note: multiplexers used in Look-Up Tables are also defined in this netlist.

inv_buf_passgate.v

Verilog modules for all the inverters, buffers and pass-gate logics, which are defined as <circuit_model
name="inv_buf|pass_gate"> of OpenFPGA architecture description. See details in Circuit Library.

local_encoder.v

Verilog modules for all the encoders and decoders, which are created when routing multiplexers are defined to
include local encoders. See details in Circuit model examples.

user_defined_templates.v

This is a template netlist, which users can refer to when writing up their user-defined Verilog modules. The
user-defined Verilog modules are those <circuit_model> in the OpenFPGA architecture description with a
specific verilog_netlist path. It contains Verilog modules with ports declaration (compatible to other netlists
that are auto-generated by OpenFPGA) but without any functionality. This file is created only when the option
--print_user_defined_template is enabled when calling the write_fabric_verilog command.

184 Chapter 10. FPGA-Verilog

OpenFPGA Documentation, Release 1.2.2022

Warning: Do not include this netlist in simulation without any modification to its content!

10.2 Testbench

In this part, we will introduce the hierarchy, dependency and functionality of each Verilog testbench, which are gener-
ated to verify a FPGA fabric implemented with an application.

Testbench Type Runtime Test Vector Test Coverage
Full Long Random Stimuli Full fabric
Formal-oriented Short Random Stimuli

Formal Method
Programmable fabric only

OpenFPGA can auto-generate two types of Verilog testbenches to validate the correctness of the fabric: full and formal-
oriented. Both testbenches share the same organization, as depicted in Fig. 10.3. To enable self-testing, the FPGA and
user’s RTL design (simulate using an HDL simulator) are driven by the same input stimuli, and any mismatch on their
outputs will raise an error flag.

Fig. 10.3: Principles of Verilog testbenches: (1) using common input stimuli; (2) applying bitstream; (3) checking
output vectors.

Fig. 10.4: Illustration on the waveforms in full testbench

10.2.1 Full Testbench

Full testbench aims at simulating an entire FPGA operating period, consisting of two phases:

• the Configuration Phase, where the synthesized design bitstream is loaded to the programmable fabric, as
highlighted by the green rectangle of Fig. 10.4;

• the Operating Phase, where random input vectors are auto-generated to drive both Devices Under Test (DUTs),
as highlighted by the red rectangle of Fig. 10.4. Using the full testbench, users can validate both the configuration
circuits and programming fabric of an FPGA.

10.2.2 Formal-oriented Testbench

The formal-oriented testbench aims to test a programmed FPGA is instantiated with the user’s bitstream. The module
of the programmed FPGA is encapsulated with the same port mapping as the user’s RTL design and thus can be fed to
a formal tool for a 100% coverage formal verification. Compared to the full testbench, this skips the time-consuming
configuration phase, reducing the simulation time, potentially also significantly accelerating the functional verification,
especially for large FPGAs.

Warning: Formal-oriented testbenches do not validate the configuration protocol of FPGAs. It is used to validate
FPGA with a wide range of benchmarks.

10.2. Testbench 185

OpenFPGA Documentation, Release 1.2.2022

10.2.3 General Usage

All the generated Verilog testbenches are located in the directory as you specify in the OpenFPGA command
write_fabric_verilog. Inside the directory, the Verilog testbenches are organized as illustrated in Fig. 10.5.

Fig. 10.5: Hierarchy of Verilog testbenches for a FPGA fabric implemented with an application

Note: <bench_name> is the module name of users’ RTL design.

<bench_name>_include_netlist.v

This file includes all the related Verilog netlists that are used by the testbenches, including both full and formal
oriented testbenches. This file is created to simplify the netlist addition for HDL simulator. This is the only file
you need to add to a simulator.

Note: Fabric Verilog netlists are included in this file.

<bench_name>_autocheck_top_tb.v

This is the netlist for full testbench.

<bench_name>_formal_random_top_tb.v

This is the netlist for formal-oriented testbench.

<bench_name>_top_formal_verification.v

This netlist includes a Verilog module of a pre-configured FPGA fabric, which is a wrapper on top of the
fpga_top.v netlist. The wrapper module has the same port map as the top-level module of user’s RTL de-
sign, which be directly def to formal verification tools to validate FPGA’s functional equivalence. Fig. 10.6
illustrates the organization of a pre-configured module, which consists of a FPGA fabric (see Fabric Netlists)
and a hard-coded bitstream. Only used I/Os of FPGA fabric will appear in the port list of the pre-configured
module.

10.3 Mock FPGA Wrapper

OpenFPGA can generates HDL netlists that model a complete eFPGA fabric (see details in Fabric Netlists). Through
bitstream forcing, users can verify the eFPGAs that are mapped by various applications in the context of SoC (see details
in Fig. 10.6). However, the complete eFPGA fabric is very costly in design verification runtime. To reduce runtime,
a mock eFPGA wrapper is required to bridge the application HDL and other components in the SoC. As illustrated in
Fig. 10.7, a 3-bit counter application is mapped to an FPGA, while a mock wrapper is interfacing the signals between
the counter module and the SoC. The mock wrapper consists of the same ports as the FPGA fabric, which is generated
by the OpenFPGA command write_fabric_verilog. See FPGA-Verilog for its detailed usage. The only difference
lies in that the mock wrapper contains an instance of the application HDL design which is implemented on the FPGA,
while the FPGA fabric contains a complete structure of programmable resources.

Note: The mock wrapper is useful for connectivity checks on FPGA datapaths. It does not cover any configuration
protocols (see details in Configuration Protocol)

186 Chapter 10. FPGA-Verilog

OpenFPGA Documentation, Release 1.2.2022

Fig. 10.6: Internal structure of a pre-configured FPGA module

Fig. 10.7: Principles of a mock FPGA wrapper: ease SoC-level design verification

10.3. Mock FPGA Wrapper 187

OpenFPGA Documentation, Release 1.2.2022

188 Chapter 10. FPGA-Verilog

CHAPTER

ELEVEN

FPGA-BITSTREAM

FPGA-Bitstream can generate two types of bitstreams:

11.1 Generic Bitstream

11.1.1 Usage

Generic bitstream is a fabric-independent bitstream where configuration bits are organized out-of-order in a database.
This can be regarded as a raw bitstream used for

• debugging: Hardware engineers can validate if their configuration memories across the FPGA fabric are as-
signed to expected values

• an exchangeable file format for bitstream assembler: Software engineers can use the raw bit-
stream to build a bitstream assembler which organize the bitstream in the loadable formate to FPGA chips.

• creation of artificial bitstream: Test engineers can craft artificial bitstreams to test each element of
the FPGA fabric, which is typically not synthesizable by VPR. Use the --read_file option to load the artifical
bitsteam to OpenFPGA (see details in FPGA-Bitstream).

Warning: The fabric-independent bitstream cannot be directly loaded to FPGA fabrics

11.1.2 File Format

See details in Architecture Bitstream (.xml)

11.2 Fabric-dependent Bitstream

11.2.1 Usage

Fabric-dependent bitstream is design to be loadable to the configuration protocols of FPGAs. The bitstream just sets
an order to the configuration bits in the database, without duplicating the database. OpenFPGA framework provides a
fabric-dependent bitstream generator which is aligned to our Verilog netlists. The fabric-dependent bitstream can be
found in the pre-configured Verilog testbenches. The fabric bitsteam can be outputted in different file format in terms
of usage.

189

OpenFPGA Documentation, Release 1.2.2022

11.2.2 Plain Text File Format

See details in Plain text (.bit)

11.2.3 XML File Format

See details in XML (.xml)

190 Chapter 11. FPGA-Bitstream

CHAPTER

TWELVE

FILE FORMATS

OpenFPGA widely uses XML format for interchangeable files

12.1 Pin Constraints File (.xml)

The Pin Constraints File (PCF) aims to create pin binding between an implementation
and an FPGA fabric. It is a common file format used by FPGA vendors, for example,
`QuickLogic<https://docs.verilogtorouting.org/en/latest/vpr/file_formats/#placement-file-format-place>`_.

An example of design constraints is shown as follows.

<pin_constraints>
<set_io pin="clk[0]" net="clk0" default_value="1"/>
<set_io pin="clk[1]" net="clk1"/>
<set_io pin="clk[2]" net="OPEN"/>
<set_io pin="clk[3]" net="OPEN"/>

</pin_constraints>

pin="<string>"

The pin name of the FPGA fabric to be constrained, which should be a valid pin defined in OpenFPGA architec-
ture description. Explicit index is required, e.g., clk[1:1]. Otherwise, default index 0 will be considered, e.g.,
clk will be translated as clk[0:0].

net="<string>"

The net name of the pin to be mapped, which should be consistent with net definition in your .blif file. The
reserved word OPEN means that no net should be mapped to a given pin. Please ensure that it is not conflicted
with any net names in your .blif file.

default_value="<string>"

The default value of a net to be constrained. This is mainly used when generating testbenches. Valid value is 0
or 1. If defined as 1, the net is be driven by the inversion of its stimuli.

Note: This feature is mainly used to generate the correct stimuli for some pin whose polarity can be configurable.
For example, the Reset pin of an FPGA fabric may be active-low or active-high depending on its configuration.

Note: The default value in pin constraint file has a higher priority than the default_value syntax in the Circuit
Library.

191

OpenFPGA Documentation, Release 1.2.2022

12.2 Repack Design Constraints (.xml)

Warning: For the best practice, current repack design constraints only support the net remapping between pins in
the same port. Pin constraints are NOT allowed for two separated ports.

• A legal pin constraint example: when there are two clock nets, clk0 and clk1, pin constraints are forced on
two pins in a clock port clk[0:2] (e.g., clk[0] = clk0 and clk[1] == clk1).

• An illegal pin constraint example: when there are two clock nets, clk0 and clk1, pin constraints are forced
on two clock ports clkA[0] and clkB[0] (e.g., clkA[0] = clk0 and clkB[0] == clk1).

An example of design constraints is shown as follows.

<repack_design_constraints>
<pin_constraint pb_type="clb" pin="reset[0]" net="rst_n"/>
<pin_constraint pb_type="clb" pin="clk[0]" net="clk0"/>
<pin_constraint pb_type="clb" pin="clk[1]" net="clk1"/>
<pin_constraint pb_type="clb" pin="clk[2]" net="OPEN"/>
<pin_constraint pb_type="clb" pin="clk[3]" net="OPEN"/>
<ignore_net name="rst_n" pin="clb.I[0:11]"/>

</repack_design_constraints>

12.2.1 Pin constraint

pb_type="<string>"

The pb_type name to be constrained, which should be consistent with VPR’s architecture description.

pin="<string>"

The pin name of the pb_type to be constrained, which should be consistent with VPR’s architecture description.

net="<string>"

The net name of the pin to be mapped, which should be consistent with net definition in your .blif file. The
reserved word OPEN means that no net should be mapped to a given pin. Please ensure that it is not conflicted
with any net names in your .blif file.

Warning: Design constraints is a feature for power-users. It may cause repack to fail. It is users’s responsibility
to ensure proper design constraints

12.2.2 Ignore net

To ignore the global nets on specific pins, use the syntax ignore_net. Note that the qualified pins are inputs, outputs,
and clocks of pb_type. The option is useful for preventing global nets from being assigned to unwanted pins on pb_type.

name="<string>"

The global nets’s name to be ignored, which should be consistent with user-defined global nets in the PCF file.

pin="<string>"

The specified pins on a certain programmable block, which should be consistent with VPR’s architecture de-
scription.

192 Chapter 12. File Formats

OpenFPGA Documentation, Release 1.2.2022

12.3 Architecture Bitstream (.xml)

OpenFPGA can output the generic bitstream to an XML format, which is easy to debug. As shown in the following
XML code, configuration bits are organized block by block, where each block could be a LUT, a routing multiplexer
etc. Each bitstream_block includes the following information:

• name represents the instance name which you can find in the fabric netlists

• hierarchy_level represents the depth of this block in the hierarchy of the FPGA fabric. It always starts from
0 as the root.

• hierarchy represents the location of this block in FPGA fabric. The hierachy includes the full hierarchy of this
block

– instance denotes the instance name which you can find in the fabric netlists

– level denotes the depth of the block in the hierarchy

• input_nets represents the path ids and net names that are mapped to the inputs of block. Unused inputs will
be tagged as unmapped which is a reserved word of OpenFPGA. Path id corresponds the selected path_id in
the <bitstream> node.

• output_nets represents the path ids and net names that are mapped to the outputs of block. Unused outputs
will be tagged as unmapped which is a reserved word OpenFPGA.

• bitstream represents the configuration bits affiliated to this block.

– path_id denotes the index of inputs which is propagated to the output. Note that smallest valid index
starts from zero. Only routing multiplexers have the path index. Unused routing multiplexer will not have a
path_id of -1, which allows bitstream assembler to freely find the best path in terms of Quality of Results
(QoR). A used routing multiplexer should have a zero or positive path_id.

– bit denotes a single configuration bit under this block. It contains

∗ memory_port the memory port name which you can find in the fabric netlists by following the hier-
archy.

∗ value a binary value which is the configuration bit assigned to the memory port.

<bitstream_block name="fpga_top" hierarchy_level="0">
<!-- Bitstream block of a 4-input Look-Up Table in a Configurable Logic Block (CLB) -->
<bitstream_block name="grid_clb_1_1" hierarchy_level="1">
<bitstream_block name="logical_tile_clb_mode_clb__0" hierarchy_level="2">
<bitstream_block name="logical_tile_clb_mode_default__fle_0" hierarchy_level="3">
<bitstream_block name="logical_tile_clb_mode_default__fle_mode_n1_lut4__ble4_0"␣

→˓hierarchy_level="4">
<bitstream_block name="logical_tile_clb_mode_default__fle_mode_n1_lut4__ble4_

→˓mode_default__lut4_0" hierarchy_level="5">
<bitstream_block name="lut4_config_latch_mem" hierarchy_level="6">
<hierarchy>
<instance level="0" name="fpga_top"/>
<instance level="1" name="grid_clb_1_1"/>
<instance level="2" name="logical_tile_clb_mode_clb__0"/>
<instance level="3" name="logical_tile_clb_mode_default__fle_0"/>
<instance level="4" name="logical_tile_clb_mode_default__fle_mode_n1_

→˓lut4__ble4_0"/>
<instance level="5" name="logical_tile_clb_mode_default__fle_mode_n1_

→˓lut4__ble4_mode_default__lut4_0"/>
<instance level="6" name="lut4_config_latch_mem"/>

(continues on next page)

12.3. Architecture Bitstream (.xml) 193

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

</hierarchy>
<bitstream>
<bit memory_port="mem_out[0]" value="0"/>
<bit memory_port="mem_out[1]" value="0"/>
<bit memory_port="mem_out[2]" value="0"/>
<bit memory_port="mem_out[3]" value="0"/>
<bit memory_port="mem_out[4]" value="0"/>
<bit memory_port="mem_out[5]" value="0"/>
<bit memory_port="mem_out[6]" value="0"/>
<bit memory_port="mem_out[7]" value="0"/>
<bit memory_port="mem_out[8]" value="0"/>
<bit memory_port="mem_out[9]" value="0"/>
<bit memory_port="mem_out[10]" value="0"/>
<bit memory_port="mem_out[11]" value="0"/>
<bit memory_port="mem_out[12]" value="0"/>
<bit memory_port="mem_out[13]" value="0"/>
<bit memory_port="mem_out[14]" value="0"/>
<bit memory_port="mem_out[15]" value="0"/>

</bitstream>
</bitstream_block>

</bitstream_block>
</bitstream_block>

</bitstream_block>
</bitstream_block>

</bitstream_block>

<!-- More bitstream blocks -->

<!-- Bitstream block of a 2-input routing multiplexer in a Switch Block (SB) -->
<bitstream_block name="sb_0__2_" hierarchy_level="1">
<bitstream_block name="mem_right_track_0" hierarchy_level="2">
<hierarchy>
<instance level="0" name="fpga_top"/>
<instance level="1" name="sb_0__2_"/>
<instance level="2" name="mem_right_track_0"/>

</hierarchy>
<input_nets>
<path id="0" net_name="unmapped"/>
<path id="1" net_name="unmapped"/>

</input_nets>
<output_nets>
<path id="0" net_name="unmapped"/>

</output_nets>
<bitstream path_id="-1">
<bit memory_port="mem_out[0]" value="0"/>
<bit memory_port="mem_out[1]" value="0"/>

</bitstream>
</bitstream_block>

</bitstream_block>
</bitstream_block>

194 Chapter 12. File Formats

OpenFPGA Documentation, Release 1.2.2022

12.4 Fabric-dependent Bitstream

12.4.1 Plain text (.bit)

This file format is designed to be directly loaded to an FPGA fabric. It does not include any comments but only
bitstream.

The information depends on the type of configuration protocol.

vanilla

A line consisting of 0 | 1

scan_chain

Multiple lines consisting of 0 | 1

For example, a bitstream for 1 configuration regions:

0
1
0
0

For example, a bitstream for 4 configuration regions:

0000
1010
0110
0120

Note: When there are multiple configuration regions, each line may consist of multiple bits. For example, 0110
represents the bits for 4 configuration regions, where the 4 digits correspond to the bits from region 0, 1, 2,
3 respectively.

memory_bank

Multiple lines will be included, each of which is organized as <bl_address><wl_address><bits>. The size of
address line and data input bits are shown as a comment in the bitstream file, which eases the development of
bitstream downloader. For example

// Bitstream width (LSB -> MSB): <bl_address 5 bits><wl_address 5 bits><data input␣
→˓1 bits>

The first part represents the Bit-Line address. The second part represents the Word-Line address. The third part
represents the configuration bit. For example

<bitline_address><wordline_address><bit_value>
<bitline_address><wordline_address><bit_value>
...
<bitline_address><wordline_address><bit_value>

Note: When there are multiple configuration regions, each <bit_value> may consist of multiple bits. For
example, 0110 represents the bits for 4 configuration regions, where the 4 digits correspond to the bits from
region 0, 1, 2, 3 respectively.

12.4. Fabric-dependent Bitstream 195

OpenFPGA Documentation, Release 1.2.2022

ql_memory_bank using decoders

Multiple lines will be included, each of which is organized as <bl_address><wl_address><bits>. The size of
address line and data input bits are shown as a comment in the bitstream file, which eases the development of
bitstream downloader. For example

// Bitstream width (LSB -> MSB): <bl_address 5 bits><wl_address 5 bits><data input␣
→˓1 bits>

The first part represents the Bit-Line address. The second part represents the Word-Line address. The third part
represents the configuration bit. For example

<bitline_address><wordline_address><bit_value>
<bitline_address><wordline_address><bit_value>
...
<bitline_address><wordline_address><bit_value>

Note: When there are multiple configuration regions, each <bit_value> may consist of multiple bits. For
example, 0110 represents the bits for 4 configuration regions, where the 4 digits correspond to the bits from
region 0, 1, 2, 3 respectively.

ql_memory_bank using flatten BL and WLs

Multiple lines will be included, each of which is organized as <bl_data><wl_data>. The size of data are shown
as a comment in the bitstream file, which eases the development of bitstream downloader. For example

// Bitstream width (LSB -> MSB): <Region 1: bl_data 5 bits><Region 2: bl_data 4␣
→˓bits><Region 1: wl_data 5 bits><Region 2: wl_data 6 bits>

The first part represents the Bit-Line data from multiple configuration regions. The second part represents the
Word-Line data from multiple configuration regions. For example

<bitline_data_region1><bitline_data_region2><wordline_data_region1><wordline_data_
→˓region2>
<bitline_data_region1><bitline_data_region2><wordline_data_region1><wordline_data_
→˓region2>
...
<bitline_data_region1><bitline_data_region2><wordline_data_region1><wordline_data_
→˓region2>

Note: The WL data of region is one-hot.

ql_memory_bank using shift registers

Multiple lines will be included, each of which is organized as <bl_data> or <wl_data>. The size of data are
shown as a comment in the bitstream file, which eases the development of bitstream downloader. For example

// Bitstream word count: 36
// Bitstream bl word size: 39
// Bitstream wl word size: 37
// Bitstream width (LSB -> MSB): <bl shift register heads 1 bits><wl shift register␣
→˓heads 1 bits>

The bitstream data are organized by words. Each word consists of two parts, BL data to be loaded to BL shift
register chains and WL data to be loaded to WL shift register chains For example

196 Chapter 12. File Formats

OpenFPGA Documentation, Release 1.2.2022

// Word 0
// BL Part
<bitline_shift_register_data@clock_0> ----
<bitline_shift_register_data@clock_1> ^
<bitline_shift_register_data@clock_1> |
... BL word size
<bitline_shift_register_data@clock_n-2> |
<bitline_shift_register_data@clock_n-1> v
<bitline_shift_register_data@clock_n> ----
// Word 0
// WL Part
<wordline_shift_register_data@clock_0> ----
<wordline_shift_register_data@clock_1> ^
<wordline_shift_register_data@clock_1> |
... WL word size
<wordline_shift_register_data@clock_n-2> |
<wordline_shift_register_data@clock_n-1> v
<wordline_shift_register_data@clock_n> ----
// Word 1
// BL Part
<bitline_shift_register_data@clock_0> ----
<bitline_shift_register_data@clock_1> ^
<bitline_shift_register_data@clock_1> |
... BL word size
<bitline_shift_register_data@clock_n-2> |
<bitline_shift_register_data@clock_n-1> v
<bitline_shift_register_data@clock_n> ----
// Word 1
// WL Part
<wordline_shift_register_data@clock_0> ----
<wordline_shift_register_data@clock_1> ^
<wordline_shift_register_data@clock_1> |
... WL word size
<wordline_shift_register_data@clock_n-2> |
<wordline_shift_register_data@clock_n-1> v
<wordline_shift_register_data@clock_n> ----
... // More words

Note: The BL/WL data may be multi-bit, while each bit corresponds to a configuration region

Note: The WL data of region is one-hot.

frame_based

Multiple lines will be included, each of which is organized as <address><data_input_bits>. The size of
address line and data input bits are shown as a comment in the bitstream file, which eases the development of
bitstream downloader. For example

// Bitstream width (LSB -> MSB): <address 14 bits><data input 1 bits>

Note that the address may include don’t care bit which is denoted as x.

12.4. Fabric-dependent Bitstream 197

OpenFPGA Documentation, Release 1.2.2022

Note: OpenFPGA automatically convert don’t care bit to logic 0 when generating testbenches.

For example

<frame_address><bit_value>
<frame_address><bit_value>
...
<frame_address><bit_value>

Note: When there are multiple configuration regions, each <bit_value> may consist of multiple bits. For
example, 0110 represents the bits for 4 configuration regions, where the 4 digits correspond to the bits from
region 0, 1, 2, 3 respectively.

12.4.2 XML (.xml)

This file format is designed to generate testbenches using external tools, e.g., CocoTB.

In principle, the file consist a number of XML node <region>, each region has a unique id, and contains a number of
XML nodes <bit>.

• id: The unique id of a configuration region in the fabric bitstream.

A quick example:

<region id="0">
<bit id="0" value="1" path="fpga_top.grid_clb_1__2_.logical_tile_clb_mode_clb__0.mem_

→˓fle_9_in_5.mem_out[0]"/>
</bit>

</region>

Each XML node <bit> contains the following attributes:

• id: The unique id of the configuration bit in the fabric bitstream.

• value: The configuration bit value.

• path represents the location of this block in FPGA fabric, i.e., the full path in the hierarchy of FPGA fabric.

A quick example:

<bit id="0" value="1" path="fpga_top.grid_clb_1__2_.logical_tile_clb_mode_clb__0.mem_fle_
→˓9_in_5.mem_out[0]"/>
</bit>

Other information may depend on the type of configuration protocol.

memory_bank

• bl: Bit line address information

• wl: Word line address information

A quick example:

198 Chapter 12. File Formats

OpenFPGA Documentation, Release 1.2.2022

<bit id="0" value="1" path="fpga_top.grid_clb_1__2_.logical_tile_clb_mode_clb__0.
→˓mem_fle_9_in_5.mem_out[0]"/>
<bl address="000000"/>
<wl address="000000"/>

</bit>

frame_based

• frame: frame address information

Note: Frame address may include don’t care bit which is denoted as x.

A quick example:

<bit id="0" value="1" path="fpga_top.grid_clb_1__2_.logical_tile_clb_mode_clb__0.
→˓mem_fle_9_in_5.mem_out[0]"/>
<frame address="0001000x00000x01"/>

</bit>

12.5 Bitstream Setting (.xml)

An example of bitstream settings is shown as follows. This can define a hard-coded bitstream for a reconfigurable
resource in FPGA fabrics.

Warning: Bitstream setting is a feature for power-users. It may cause wrong bitstream to be generated. For
example, the hard-coded bitstream is not compatible with LUTs whose nets may be swapped during routing stage
(cause a change on the truth table as well as bitstream). It is users’s responsibility to ensure correct bitstream.

<openfpga_bitstream_setting>
<pb_type name="<string>" source="eblif" content=".param LUT" is_mode_select_bistream=

→˓"true" bitstream_offset="1"/>
<interconnect name="<string>" default_path="<string>"/>
<non_fabric name="<string>" file="<string>">
<pb name="<string>" type="<string>" content="<string>"/>

</non_fabric>
</openfpga_bitstream_setting>

12.5.1 pb_type-related Settings

The following syntax are applicable to the XML definition tagged by pb_type in bitstream setting files.

name="<string>"

The pb_type name to be constrained, which should be the full path of a pb_type consistent with VPR’s archi-
tecture description. For example,

pb_type="clb.fle[arithmetic].soft_adder.adder_lut4"

12.5. Bitstream Setting (.xml) 199

OpenFPGA Documentation, Release 1.2.2022

source="<string>"

The source of the pb_type bitstream, which could be from a .eblif file. For example,

source="eblif"

content="<string>"

The content of the pb_type bitstream, which could be a keyword in a .eblif file. For example, content=".
attr LUT"means that the bitstream will be extracted from the .attr LUT line which is defined under the .blif
model (that is defined under the pb_type in VPR architecture file).

is_mode_select_bitstream="<bool>"

Can be either true or false. When set true, the bitstream is considered as mode-selection bitstream, which
may overwrite mode_bits definition in pb_type_annotation of OpenFPGA architecture description. (See
details in Primitive Blocks inside Multi-mode Configurable Logic Blocks)

bitstream_offset="<int>"

Specify the offset to be applied when overloading the bitstream to a target. For example, a LUT may have a
16-bit bitstream. When offset=1, bitstream overloading will skip the first bit and start from the second bit of
the 16-bit bitstream.

12.5.2 Interconnection-related Settings

The following syntax are applicable to the XML definition tagged by interconnect in bitstream setting files.

name="<string>"

The interconnect name to be constrained, which should be the full path of a pb_type consistent with VPR’s
architecture description. For example,

pb_type="clb.fle[arithmetic].mux1"

default_path="<string>"

The default path denotes an input name that is consistent with VPR’s architecture description. For example, in
VPR architecture, there is a mux defined as

<mux name="mux1" input="iopad.inpad ff.Q" output="io.inpad"/>

The default path can be either iopad.inpad or ff.Q which corresponds to the first input and the second input
respectively.

12.5.3 non_fabric-related Settings

This is special syntax to extract PB defined parameter or attribute and save the data into dedicated JSON file outside
of fabric bitstream

The following syntax are applicable to the XML definition tagged by non_fabric in bitstream setting files.

name="<string: pb_type top level name>"

The pb_type top level name that the data to be extracted. For example,

name="bram"

200 Chapter 12. File Formats

OpenFPGA Documentation, Release 1.2.2022

file="<string: JSON filepath>"

The filepath the data is saved to. For example,

file="bram.json"

``pb`` child element name="<string: pb_type child name>"

Together with pb_type top level name, that is the source of the pb_type bitstream

The final pb_type name is “<pb_type top level name>” + “<pb_type child name>”

For example,

The final pb_type name is “bram.bram_lr[mem_36K_tdp].mem_36K”

``pb`` child element content="<string>"

The content of the pb_type data to be extracted. For example, content=".param INIT_i" means that the
data will be extracted from the .param INIT_i line defined under the .blif model.

12.6 Fabric Key (.xml)

A fabric key follows an XML format. As shown in the following XML code, the key file includes the organization of
configurable blocks in the top-level FPGA fabric.

12.6.1 Configurable Module

Fabric key can be applied to various modules. Each module can be a top-level FPGA fabric, or a submodule of the
FPGA fabric.

<module name="<string>"/>

Under each module, a set of keys can be defined. Note that for the top-level FPGA fabric, not only keys but also
regions and shift-register banks can be defined. For non-top-level module, only keys are allowed.

• name indicates the unique name of a valid module in FPGA fabric. Note that fpga_top is the considered
as the module name of the top-level FPGA fabric.

Note: fpga_core is not applicable to fabric key.

12.6.2 Configurable Region

The top-level FPGA fabric can consist of several configurable regions, where a region may contain one or multiple
configurable blocks. Each configurable region can be configured independently and in parrallel.

<region id="<int>"/>

• id indicates the unique id of a configurable region in the fabric.

Warning: The id must start from zero!

12.6. Fabric Key (.xml) 201

OpenFPGA Documentation, Release 1.2.2022

Note: The number of regions defined in the fabric key must be consistent with the number of regions defined
in the configuration protocol of architecture description. (See details in Configuration Protocol).

The following example shows how to define multiple configuration regions in the fabric key.

<fabric_key>
<module name="fpga_top">
<region id="0">
<bl_shift_register_banks>

<bank id="0" range="bl[0:24]"/>
<bank id="1" range="bl[25:40]"/>

</bl_shift_register_banks>
<wl_shift_register_banks>

<bank id="0" range="wl[0:19],wl[40:59]"/>
<bank id="1" range="wl[21:39],wl[60:69]"/>

</wl_shift_register_banks>
<key id="0" name="grid_io_bottom" value="0" alias="grid_io_bottom_1__0_"/>
<key id="1" name="grid_io_right" value="0" alias="grid_io_right_2__1_"/>
<key id="2" name="sb_1__1_" value="0" alias="sb_1__1_"/>

</region>
<region id="1">
<bl_shift_register_banks>

<bank id="0" range="bl[0:24]"/>
<bank id="1" range="bl[25:40]"/>

</bl_shift_register_banks>
<wl_shift_register_banks>

<bank id="0" range="wl[0:19]"/>
</wl_shift_register_banks>
<key id="3" name="cbx_1__1_" value="0" alias="cbx_1__1_"/>
<key id="4" name="grid_io_top" value="0" alias="grid_io_top_1__2_"/>
<key id="5" name="sb_0__1_" value="0" alias="sb_0__1_"/>

</region>
<region id="2">
<bl_shift_register_banks>

<bank id="0" range="bl[0:24]"/>
<bank id="1" range="bl[25:40]"/>
<bank id="2" range="bl[41:59]"/>

</bl_shift_register_banks>
<wl_shift_register_banks>

<bank id="0" range="wl[0:19]"/>
<bank id="1" range="wl[21:39]"/>

</wl_shift_register_banks>
<key id="6" name="sb_0__0_" value="0" alias="sb_0__0_"/>
<key id="7" name="cby_0__1_" value="0" alias="cby_0__1_"/>
<key id="8" name="grid_io_left" value="0" alias="grid_io_left_0__1_"/>

</region>
<region id="3">
<bl_shift_register_banks>

<bank id="0" range="bl[0:24]"/>
<bank id="1" range="bl[25:40]"/>

</bl_shift_register_banks>
<wl_shift_register_banks>

(continues on next page)

202 Chapter 12. File Formats

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

<bank id="0" range="wl[0:19]"/>
<bank id="1" range="wl[21:39]"/>
<bank id="2" range="wl[40:49]"/>

</wl_shift_register_banks>
<key id="9" name="sb_1__0_" value="0" alias="sb_1__0_"/>
<key id="10" name="cbx_1__0_" value="0" alias="cbx_1__0_"/>
<key id="11" name="cby_1__1_" value="0" alias="cby_1__1_"/>
<key id="12" name="grid_clb" value="0" alias="grid_clb_1__1_"/>

</region>
</module>

</fabric_key>

12.6.3 Configurable Block

Each configurable block is defined as a key. There are two ways to define a key, either with alias or with name and
value.

<key id="<int>" alias="<string>" name="<string>" value="<int>"/>

• id indicates the sequence of the configurable memory block in the top-level FPGA fabric.

• name indicates the module name of the configurable memory block. This property becomes optional when
alias is defined.

• value indicates the instance id of the configurable memory block in the top-level FPGA fabric. This
property becomes optional when alias is defined.

• alias indicates the instance name of the configurable memory block in the top-level FPGA fabric. If a
valid alias is specified, the name and value are not required.

• column indicates the relative x coordinate for a configurable memory in a configurable region at the top-
level FPGA fabric. This is required when the memory bank protocol is selection.

Note: The configurable memory blocks in the same column will share the same Bit Line (BL) bus

• row indicates the relative y coordinate for a configurable memory in a configurable region at the top-level
FPGA fabric. This is required when the memory bank protocol is selection.

Note: The configurable memory blocks in the same row will share the same Word Line (WL) bus

Warning: For fast loading of fabric key, strongly recommend to use pairs name and alias or name and value in
the fabric key file. Using only alias may cause long parsing time for fabric key.

The following is an example of a fabric key generate by OpenFPGA for a 2 × 2 FPGA. This key contains only alias
which is easy to craft.

<fabric_key>
<module name="fpga_top">
<region id="0">
<key id="0" alias="sb_2__2_"/>

(continues on next page)

12.6. Fabric Key (.xml) 203

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

<key id="1" alias="grid_clb_2_2"/>
<key id="2" alias="sb_0__1_"/>
<key id="3" alias="cby_0__1_"/>
<key id="4" alias="grid_clb_2_1"/>
<key id="5" alias="grid_io_left_0_1"/>
<key id="6" alias="sb_1__0_"/>
<key id="7" alias="sb_1__1_"/>
<key id="8" alias="cbx_2__1_"/>
<key id="9" alias="cby_1__2_"/>
<key id="10" alias="grid_io_right_3_2"/>
<key id="11" alias="cbx_2__0_"/>
<key id="12" alias="cby_1__1_"/>
<key id="13" alias="grid_io_right_3_1"/>
<key id="14" alias="grid_io_bottom_1_0"/>
<key id="15" alias="cby_2__1_"/>
<key id="16" alias="sb_2__1_"/>
<key id="17" alias="cbx_1__0_"/>
<key id="18" alias="grid_clb_1_2"/>
<key id="19" alias="cbx_1__2_"/>
<key id="20" alias="cbx_2__2_"/>
<key id="21" alias="sb_2__0_"/>
<key id="22" alias="sb_1__2_"/>
<key id="23" alias="cby_0__2_"/>
<key id="24" alias="sb_0__0_"/>
<key id="25" alias="grid_clb_1_1"/>
<key id="26" alias="cby_2__2_"/>
<key id="27" alias="grid_io_top_2_3"/>
<key id="28" alias="sb_0__2_"/>
<key id="29" alias="grid_io_bottom_2_0"/>
<key id="30" alias="cbx_1__1_"/>
<key id="31" alias="grid_io_top_1_3"/>
<key id="32" alias="grid_io_left_0_2"/>

</region>
</module>

</fabric_key>

The following shows another example of a fabric key generate by OpenFPGA for a 2 × 2 FPGA. This key contains
only name and value which is fast to parse.

<fabric_key>
<module name="fpga_top">
<region id="0">
<key id="0" name="sb_2__2_" value="0"/>
<key id="1" name="grid_clb" value="3"/>
<key id="2" name="sb_0__1_" value="0"/>
<key id="3" name="cby_0__1_" value="0"/>
<key id="4" name="grid_clb" value="2"/>
<key id="5" name="grid_io_left" value="0"/>
<key id="6" name="sb_1__0_" value="0"/>
<key id="7" name="sb_1__1_" value="0"/>
<key id="8" name="cbx_1__1_" value="1"/>
<key id="9" name="cby_1__1_" value="1"/>

(continues on next page)

204 Chapter 12. File Formats

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

<key id="10" name="grid_io_right" value="1"/>
<key id="11" name="cbx_1__0_" value="1"/>
<key id="12" name="cby_1__1_" value="0"/>
<key id="13" name="grid_io_right" value="0"/>
<key id="14" name="grid_io_bottom" value="0"/>
<key id="15" name="cby_2__1_" value="0"/>
<key id="16" name="sb_2__1_" value="0"/>
<key id="17" name="cbx_1__0_" value="0"/>
<key id="18" name="grid_clb" value="1"/>
<key id="19" name="cbx_1__2_" value="0"/>
<key id="20" name="cbx_1__2_" value="1"/>
<key id="21" name="sb_2__0_" value="0"/>
<key id="22" name="sb_1__2_" value="0"/>
<key id="23" name="cby_0__1_" value="1"/>
<key id="24" name="sb_0__0_" value="0"/>
<key id="25" name="grid_clb" value="0"/>
<key id="26" name="cby_2__1_" value="1"/>
<key id="27" name="grid_io_top" value="1"/>
<key id="28" name="sb_0__2_" value="0"/>
<key id="29" name="grid_io_bottom" value="1"/>
<key id="30" name="cbx_1__1_" value="0"/>
<key id="31" name="grid_io_top" value="0"/>
<key id="32" name="grid_io_left" value="1"/>

</region>
</module>

</fabric_key>

The following shows another example of a fabric key generate by OpenFPGA for a 2 × 2 FPGA using memory bank.
This key contains only name, value, row and column.

<fabric_key>
<module name="fpga_top">
<region id="0">
<key id="0" name="sb_2__2_" value="0" alias="sb_2__2_" column="5" row="5"/>
<key id="1" name="grid_clb" value="3" alias="grid_clb_2__2_" column="4" row="4"/>
<key id="2" name="sb_0__1_" value="0" alias="sb_0__1_" column="1" row="3"/>
<key id="3" name="cby_0__1_" value="0" alias="cby_0__1_" column="1" row="2"/>
<key id="4" name="grid_clb" value="2" alias="grid_clb_2__1_" column="4" row="2"/>
<key id="5" name="grid_io_left" value="0" alias="grid_io_left_0__1_" column="0"␣

→˓row="2"/>
<key id="6" name="sb_1__0_" value="0" alias="sb_1__0_" column="3" row="1"/>
<key id="7" name="sb_1__1_" value="0" alias="sb_1__1_" column="3" row="3"/>
<key id="8" name="cbx_1__1_" value="1" alias="cbx_2__1_" column="4" row="3"/>
<key id="9" name="cby_1__1_" value="1" alias="cby_1__2_" column="3" row="4"/>
<key id="10" name="grid_io_right" value="0" alias="grid_io_right_3__2_" column="6"␣

→˓row="4"/>
<key id="11" name="cbx_1__0_" value="1" alias="cbx_2__0_" column="4" row="1"/>
<key id="12" name="cby_1__1_" value="0" alias="cby_1__1_" column="3" row="2"/>
<key id="13" name="grid_io_right" value="1" alias="grid_io_right_3__1_" column="6"␣

→˓row="2"/>
<key id="14" name="grid_io_bottom" value="1" alias="grid_io_bottom_1__0_" column="2

→˓" row="0"/>
(continues on next page)

12.6. Fabric Key (.xml) 205

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

<key id="15" name="cby_2__1_" value="0" alias="cby_2__1_" column="5" row="2"/>
<key id="16" name="sb_2__1_" value="0" alias="sb_2__1_" column="5" row="3"/>
<key id="17" name="cbx_1__0_" value="0" alias="cbx_1__0_" column="2" row="1"/>
<key id="18" name="grid_clb" value="1" alias="grid_clb_1__2_" column="2" row="4"/>
<key id="19" name="cbx_1__2_" value="0" alias="cbx_1__2_" column="2" row="5"/>
<key id="20" name="cbx_1__2_" value="1" alias="cbx_2__2_" column="4" row="5"/>
<key id="21" name="sb_2__0_" value="0" alias="sb_2__0_" column="5" row="1"/>
<key id="22" name="sb_1__2_" value="0" alias="sb_1__2_" column="3" row="5"/>
<key id="23" name="cby_0__1_" value="1" alias="cby_0__2_" column="1" row="4"/>
<key id="24" name="sb_0__0_" value="0" alias="sb_0__0_" column="1" row="1"/>
<key id="25" name="grid_clb" value="0" alias="grid_clb_1__1_" column="2" row="2"/>
<key id="26" name="cby_2__1_" value="1" alias="cby_2__2_" column="5" row="4"/>
<key id="27" name="grid_io_top" value="1" alias="grid_io_top_2__3_" column="4" row=

→˓"6"/>
<key id="28" name="sb_0__2_" value="0" alias="sb_0__2_" column="1" row="5"/>
<key id="29" name="grid_io_bottom" value="0" alias="grid_io_bottom_2__0_" column="4

→˓" row="0"/>
<key id="30" name="cbx_1__1_" value="0" alias="cbx_1__1_" column="2" row="3"/>
<key id="31" name="grid_io_top" value="0" alias="grid_io_top_1__3_" column="2" row=

→˓"6"/>
<key id="32" name="grid_io_left" value="1" alias="grid_io_left_0__2_" column="0"␣

→˓row="4"/>
</region>

</module>
</fabric_key>

12.6.4 BL Shift Register Banks

Note: The customizable is only available when the shift-register-based memory bank is selected in Configuration
Protocol

Each Bit-Line (BL) shift register bank is defined in the code block <bl_shift_register_banks>. A shift register
bank may contain multiple shift register chains. - each shift register chain can be defined using the bank syntax - the
BLs controlled by each chain can be customized through the range syntax.

<bank id="<int>" range="<ports>"/>

• id indicates the sequence of the shift register chain in the bank. The id denotes the index in the head or tail
bus. For example, id="0" means the head or tail of the shift register will be in the first bit of a head bus
head[0:4]

• range indicates BL port to be controlled by this shift register chain. Multiple BL ports can be defined but
the sequence matters. For example, bl[0:3], bl[6:10] infers a 9-bit shift register chain whose output
ports are connected from bl[0] to bl[10].

Note: When creating the range, you must know the number of BLs in the configuration region

Note: ports must use bl as the reserved port name

206 Chapter 12. File Formats

OpenFPGA Documentation, Release 1.2.2022

12.6.5 WL Shift Register Banks

Note: The customizable is only available when the shift-register-based memory bank is selected in Configuration
Protocol

Each Word-Line (WL) shift register bank is defined in the code block <wl_shift_register_banks>. A shift register
bank may contain multiple shift register chains. - each shift register chain can be defined using the bank syntax - the
BLs controlled by each chain can be customized through the range syntax.

<bank id="<int>" range="<ports>"/>

• id indicates the sequence of the shift register chain in the bank. The id denotes the index in the head or tail
bus. For example, id="0" means the head or tail of the shift register will be in the first bit of a head bus
head[0:4]

• range indicates WL port to be controlled by this shift register chain. Multiple WL ports can be defined but
the sequence matters. For example, wl[0:3], wl[6:10] infers a 9-bit shift register chain whose output
ports are connected from wl[0] to wl[10].

Note: When creating the range, you must know the number of BLs in the configuration region

Note: ports must use wl as the reserved port name

12.7 I/O Mapping File (.xml)

The I/O mapping file aims to show

• What nets have been mapped to each I/O

• What is the directionality of each mapped I/O

An example of design constraints is shown as follows.

<io_mapping>
<io name="gfpga_pad_GPIO_PAD[6:6]" net="a" dir="input"/>
<io name="gfpga_pad_GPIO_PAD[1:1]" net="b" dir="input"/>
<io name="gfpga_pad_GPIO_PAD[9:9]" net="out_c" dir="output"/>

</io_mapping>

name="<string>"

The pin name of the FPGA fabric which has been mapped, which should be a valid pin defined in OpenFPGA
architecture description.

Note: You should be find the exact pin in the top-level module of FPGA fabric if you output the Verilog netlists.

net="<string>"

The net name which is actually mapped to a pin, which should be consistent with net definition in your .blif
file.

12.7. I/O Mapping File (.xml) 207

OpenFPGA Documentation, Release 1.2.2022

dir="<string>"

The direction of an I/O, which can be either input or output.

12.8 I/O Information File (.xml)

Note: This file is in a different usage than the I/O mapping file (see details in I/O Mapping File (.xml))

The I/O information file aims to show

• The number of I/O in an FPGA fabric

• The name of each I/O in an FPGA fabric

• The coordinate (in VPR domain) of each I/O in an FPGA fabric

An example of the file is shown as follows.

<io_coordinates>
<io pad="gfpga_pad_GPIO_PAD[0]" x="1" y="2" z="0"/>
<io pad="gfpga_pad_GPIO_PAD[1]" x="1" y="2" z="1"/>
<io pad="gfpga_pad_GPIO_PAD[2]" x="1" y="2" z="2"/>
<io pad="gfpga_pad_GPIO_PAD[3]" x="1" y="2" z="3"/>
<io pad="gfpga_pad_GPIO_PAD[4]" x="1" y="2" z="4"/>
<io pad="gfpga_pad_GPIO_PAD[5]" x="1" y="2" z="5"/>
<io pad="gfpga_pad_GPIO_PAD[6]" x="1" y="2" z="6"/>
<io pad="gfpga_pad_GPIO_PAD[7]" x="1" y="2" z="7"/>
<io pad="gfpga_pad_GPIO_PAD[8]" x="2" y="1" z="0"/>
<io pad="gfpga_pad_GPIO_PAD[9]" x="2" y="1" z="1"/>
<io pad="gfpga_pad_GPIO_PAD[10]" x="2" y="1" z="2"/>
<io pad="gfpga_pad_GPIO_PAD[11]" x="2" y="1" z="3"/>
<io pad="gfpga_pad_GPIO_PAD[12]" x="2" y="1" z="4"/>
<io pad="gfpga_pad_GPIO_PAD[13]" x="2" y="1" z="5"/>
<io pad="gfpga_pad_GPIO_PAD[14]" x="2" y="1" z="6"/>
<io pad="gfpga_pad_GPIO_PAD[15]" x="2" y="1" z="7"/>

</io_coordinates>

pad="<string>"

The port name of the I/O in FPGA fabric, which should be a valid port defined in output Verilog netlist.

Note: You should be find the exact pin in the top-level module of FPGA fabric if you output the Verilog netlists.

x="<int>"

The x coordinate of the I/O in VPR coordinate system.

y="<int>"

The y coordinate of the I/O in VPR coordinate system.

z="<int>"

The z coordinate of the I/O in VPR coordinate system.

208 Chapter 12. File Formats

OpenFPGA Documentation, Release 1.2.2022

12.9 Bitstream Distribution File (.xml)

The bitstream distribution file aims to show

• region-level bitstream distribution - The total number of configuration bits under each region

• block-level bitstream distribution - The total number of configuration bits under each block - The number of
configuration bits per block

An example of the file is shown as follows.

<bitstream_distribution>
<regions>
<region id="0" number_of_bits="2250">
</region>

</regions>
<blocks>
<block name="fpga_top" number_of_bits="2250">
<block name="grid_clb_1__1_" number_of_bits="1700">
</block>
<block name="grid_io_top_1__2_" number_of_bits="8">
</block>
<block name="grid_io_right_2__1_" number_of_bits="8">
</block>
<block name="grid_io_bottom_1__0_" number_of_bits="8">
</block>
<block name="grid_io_left_0__1_" number_of_bits="8">
</block>
<block name="sb_0__0_" number_of_bits="40">
</block>
<block name="sb_0__1_" number_of_bits="40">
</block>
<block name="sb_1__0_" number_of_bits="40">
</block>
<block name="sb_1__1_" number_of_bits="40">
</block>
<block name="cbx_1__0_" number_of_bits="88">
</block>
<block name="cbx_1__1_" number_of_bits="94">
</block>
<block name="cby_0__1_" number_of_bits="88">
</block>
<block name="cby_1__1_" number_of_bits="88">
</block>

</block>
</blocks>

</bitstream_distribution>

12.9. Bitstream Distribution File (.xml) 209

OpenFPGA Documentation, Release 1.2.2022

12.9.1 Region-Level Bitstream Distribution

Region-level bitstream distribution is shown under the <regions> code block

id="<string>"

The unique index of the region, which can be found in the Fabric Key (.xml)

number_of_bits="<string>"

The total number of configuration bits in this region

12.9.2 Block-Level Bitstream Distribution

Block-level bitstream distribution is shown under the <blocks> code block

name="<string>"

The block name represents the instance name which you can find in the fabric netlists

number_of_bits="<string>"

The total number of configuration bits in this block

12.10 Bus Group File (.xml)

The bus group file aims to show

• How bus ports are flatten by EDA engines, e.g., synthesis.

• What are the pins in post-routing corresponding to the bus ports before synthesis

An example of file is shown as follows.

<bus_group>
<bus name="i_addr[0:3]" big_endian="false">
<pin id="0" name="i_addr_0_"/>
<pin id="1" name="i_addr_1_"/>
<pin id="2" name="i_addr_2_"/>
<pin id="3" name="i_addr_3_"/>

</bus>
</bus_group>

12.10.1 Bus-related Syntax

name="<string>"

The bus port defined before synthesis, e.g., addr[0:3]

big_endian="<bool>"

Specify if this port should follow big endian or little endian in Verilog netlist. By default, big endian is assumed,
e.g., addr[0:3].

210 Chapter 12. File Formats

OpenFPGA Documentation, Release 1.2.2022

12.10.2 Pin-related Syntax

id="<int>"

The index of the current pin in a bus port. The index must be the range of [LSB, MSB-1] that are defined in the
bus.

name="<string>"

The pin name after bus flatten in synthesis results

12.11 Pin Constraints File (.pcf)

Note: This file is in a different usage than the Pin Constraints File in XML format (see details in Pin Constraints File
(.xml))

The PCF file is the file which users should craft to assign their I/O constraints

An example of the file is shown as follows.

set_io a pad_fpga_io[0]
set_io b[0] pad_fpga_io[4]
set_io c[1] pad_fpga_io[6]

set_io <net> <pin>

Assign a net (defined as an input or output in users’ HDL design) to a specific pin of an FPGA device (typically
a packaged chip).

Note: The net should be single-bit and match the port declaration of the top-module in users’ HDL design

Note: FPGA devices have different pin names, depending their naming rules. Please contact your vendor about
details.

12.12 Pin Table File (.csv)

Note: This file is typically a spreadsheet provided by FPGA vendors. Please contact your vendor for the exact file.

Note: OpenFPGA will not include or guarantee the correctness of the file!!!

The pin table file is the file which describes the pin mapping between a chip and an FPGA inside the chip.

An example of the file is shown as follows.

orientation,row,col,pin_num_in_cell,port_name,mapped_pin,GPIO_type,Associated Clock,
→˓Clock Edge

(continues on next page)

12.11. Pin Constraints File (.pcf) 211

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

TOP,,,,gfpga_pad_IO_A2F[0],pad_fpga_io[0],in,,
TOP,,,,gfpga_pad_IO_F2A[0],pad_fpga_io[0],out,,
TOP,,,,gfpga_pad_IO_A2F[4],pad_fpga_io[1],in,,
TOP,,,,gfpga_pad_IO_F2A[4],pad_fpga_io[1],out,,
TOP,,,,gfpga_pad_IO_A2F[8],pad_fpga_io[2],in,,
TOP,,,,gfpga_pad_IO_F2A[8],pad_fpga_io[2],out,,
TOP,,,,gfpga_pad_IO_A2F[31],pad_fpga_io[3],in,,
TOP,,,,gfpga_pad_IO_F2A[31],pad_fpga_io[3],out,,
RIGHT,,,,gfpga_pad_IO_A2F[32],pad_fpga_io[4],in,,
RIGHT,,,,gfpga_pad_IO_F2A[32],pad_fpga_io[4],out,,
RIGHT,,,,gfpga_pad_IO_A2F[40],pad_fpga_io[5],in,,
RIGHT,,,,gfpga_pad_IO_F2A[40],pad_fpga_io[5],out,,
BOTTOM,,,,gfpga_pad_IO_A2F[64],pad_fpga_io[6],in,,
BOTTOM,,,,gfpga_pad_IO_F2A[64],pad_fpga_io[6],out,,
LEFT,,,,gfpga_pad_IO_F2A[127],pad_fpga_io[7],in,,
LEFT,,,,gfpga_pad_IO_A2F[127],pad_fpga_io[7],out,,

An pin table may serve in various purposes. However, for OpenFPGA, the following attributes are required

orientation

Specify on which side the pin locates

port_name

Specify the port name of the FPGA fabric

mapped_pin

Specify the pin name of the FPGA chip

GPIO_type

Specify the pin direction. Can be [in``|``out].

Note: This column can be left as empty if users follow quicklogic style. See details in pcf2place

12.13 Clock Network (.xml)

The XML-based clock network description language is used to describe

• One or more programmable clock networks constaining programmable switches for routing clock signals

• The routing for clock signals on the programmable clock network

Using the clock network description language, users can define multiple clock networks, each of which consists:

• A number of clock spines which can propagate clock signals from one point to another. See details in Clock
Spine Settings.

• A number of switch points which interconnects clock spines using programmable routing switches. See details
in Switch Point Settings.

• A number of tap points which connect the clock spines to programmable blocks, e.g., CLBs. See details in Tap
Point Settings.

212 Chapter 12. File Formats

OpenFPGA Documentation, Release 1.2.2022

Note: Please note that the levels of a clock network will be automatically inferred from the clock spines and switch
points. Clock network will be only built based on the width and the number of levels, as well as the tap points.

Note: The switch points and clock spines will be used to route a clock network. The switch points will not impact the
physical clock network but only impact the configuration of the programmable routing switches in the physical clock
network.

Warning: Clock network is a feature for power-users. It requires additional EDA support to leverage the best
performance of the clock network, as timing analysis and convergence is more challenging.

<clock_networks default_segment="<string>" default_switch="<string>">
<clock_network name="<string>" width="<int>">
<spine name="<string>" start_x="<int>" start_y="<int>" end_x="<int>" end_y="<int>">
<switch_point tap="<string>" x="<int>" y="<int>"/>

</spine>
<taps>
<tap tile_pin="<string>"/>

</taps>
</clock_network>

</clock_networks>

12.13.1 General Settings

The following syntax are applicable to the XML definition under the root node clock_networks

default_segment="<string>"

Define the default routing segment to be used when building the routing tracks for the clock network. Must be a
valid routing segment defined in the VPR architecture file. For example,

default_segment="L1"

where the segment is defined in the VPR architecture file:

<segmentlist>
<segment name="L1" freq="1" length="1" type="undir"/>

</segmentlist>

Note: Currently, clock network requires only length-1 wire segment to be used!

default_switch="<string>"

Define the default routing switch to be used when interconnects the routing tracks in the clock network. Must be
a valid routing switch defined in the VPR architecture file. For example,

default_switch="clk_mux"

where the switch is defined in the VPR architecture file:

12.13. Clock Network (.xml) 213

OpenFPGA Documentation, Release 1.2.2022

<switchlist>
<switch type="mux" name="clk_mux" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_

→˓trans_size="2.630740" buf_size="27.645901"/>
</switchlist>

Note: Currently, clock network only supports one type of routing switch, which means all the programmable routing
switch in the clock network will be in the same type and circuit design topology.

12.13.2 Clock Network Settings

The following syntax are applicable to the XML definition tagged by clock_network. Note that a number of clock
networks can be defined under the root node clock_networks.

name="<string>"

The unique name of the clock network. It will be used to link the clock network to a specific global port in
Physical Tile Annotation. For example,

name="clk_tree_0"

where the clock network is used to drive the global clock pin clk0 in OpenFPGA’s architecture description file:

<tile_annotations>
<global_port name="clk0" is_clock="true" clock_arch_tree_name="clk_tree_0" default_val=

→˓"0">
<tile name="clb" port="clk[0:1]"

</global_port>
</tile_annotations>

width="<int>"

The maximum number of clock pins that a clock network can drive.

12.13.3 Clock Spine Settings

The following syntax are applicable to the XML definition tagged by spine. Note that a number of clock spines can
be defined under the node clock_network.

name="<string>"

The unique name of the clock spine. It will be used to build switch points between other clock spines.

start_x="<int>"

The coordinate X of the starting point of the clock spine.

start_y="<int>"

The coordinate Y of the starting point of the clock spine.

end_x="<int>"

The coordinate X of the ending point of the clock spine.

end_y="<int>"

The coordinate Y of the ending point of the clock spine.

For example,

214 Chapter 12. File Formats

OpenFPGA Documentation, Release 1.2.2022

<spine name="spine0" start_x="1" start_y="1" end_x="2" end_y="1"/>

where a horizental clock spine spine0 is defined which spans from (1, 1) to (2, 1)

Note: We only support clock spines in horizental and vertical directions. Diagonal clock spine is not supported!

12.13.4 Switch Point Settings

The following syntax are applicable to the XML definition tagged by switch_point. Note that a number of switch
points can be defined under each clock spine spine.

tap="<string>"

Define which clock spine will be tapped from the current clock spine.

x="<int>"

The coordinate X of the switch point. Must be a valid coordinate within the range of the current clock spine and
the clock spine to be tapped.

y="<int>"

The coordinate Y of the switch point. Must be a valid coordinate within the range of the current clock spine and
the clock spine to be tapped.

For example,

<spine name="spine0" start_x="1" start_y="1" end_x="2" end_y="1">
<switch_point tap="spine1" x="1" y="1"/>

<spine>

where clock spine spine0 will drive another clock spine spine1 at (1, 1).

12.13.5 Tap Point Settings

The following syntax are applicable to the XML definition tagged by tap. Note that a number of tap points can be
defined under the node taps.

tile_pin="<string>"

Define the pin of a programmable block to be tapped by a clock network. The pin must be a valid pin defined in
the VPR architecture description file.

Note: Only the leaf clock spine (not switch points to drive other clock spine) can tap pins of programmable blocks.

For example,

<clock_network name="clk_tree_0" width="1">
<!-- Some clock spines -->
<taps>
<tap tile_pin="clb.clk"/>

</taps>
</clock_network>

12.13. Clock Network (.xml) 215

OpenFPGA Documentation, Release 1.2.2022

where all the clock spines of the clock network clk_tree_0 tap the clock pins clk of tile clb in a VPR architecture
description file:

<tile name="clb">
<sub_tile name="clb">
<clock name="clk" num_pins="1"/>

</sub_tile>
</tile>

12.14 Fabric I/O Naming (.xml)

The XML-based description language is used to describe

• I/O names for an FPGA fabric when creating a top-level wrapper

• I/O connections between the fabric and top-level wrappers

Using the description language, users can customize the I/O names for each pin/port of an FPGA fabric, including
dummy pins (not from an FPGA fabric but required for system integration).

Under the root node <ports>, naming rules can be defined line-by-line through syntax <port>.

<ports>
<port top_name="<string>" core_name="<string>" is_dummy="<bool>" direction="<string>"/>

</ports>

Note: If you do not need to rename a port of an FPGA fabric, there is no need to define it explicitly in the naming
rules. OpenFPGA can infer it.

Please be aware of the following restrictions:

Note: Please note that when naming rules should be applied to a port at its full size. For example, given a port of
in[0:31], naming rules should cover all the 32 bits.

Note: Please note that we currently only supports port splitting at the top-level wrapper. For example, there is a port
a[0:9] from the FPGA fabric, it can be split to a0[0:4] and a1[0:4] at the top-level wrapper.

Warning: Port grouping is NOT supported yet. For example, there are ports b[0:7] and c[0:7] from the FPGA
fabric, it can NOT be grouped to a port bnc[0:15] at the top-level wrapper.

216 Chapter 12. File Formats

OpenFPGA Documentation, Release 1.2.2022

12.14.1 Syntax

Detailed syntax are presented as follows.

top_name="<string>"

Define the port name and width which will appear in the top-level wrapper. For example,

top_name="a[0:2]"

core_name="<string>"

Define the port name and width which exists in the current FPGA fabric. For example,

Note: You can find the available ports in the current top-level module of FPGA netlists. See details in Fabric
Netlists.

core_name="gfpga_pad_GPIO_PAD[0:2]"

is_dummy="<bool>"

Define if the port is a dummy one in the top-level wrapper, which does not connect to any pin/port of the current
FPGA fabric. For example,

Note: When a dummy port is defined. core_name is not required.

is_dummy="true"

direction="<string>"

Direction can be input | output | inout. Only applicable to dummy ports. For example,

direction="input"

12.14.2 Example

Fig. 12.1 shows an example of a top-level wrapper with naming rules, which is built on top of an existing FPGA core
fabric. There is a dummy input port at the top-level wrapper.

The I/O naming in the Fig. 12.1 can be described in the following XML:

<ports>
<port top_name="pclk0[0:3]" core_name="prog_clk[0:3]"/>
<port top_name="pclk1[0:3]" core_name="prog_clk[4:7]"/>
<port top_name="right_io[0:23]" core_name="pad[0:23]"/>
<port top_name="bottom_io[0:7]" core_name="pad[24:31]"/>
<port top_name="pvt_sense[0:0]" is_dummy="true" direction="input"/>

</ports>

Note that since port reset[0:0] require no name changes, it is not required to be defined in the XML.

12.14. Fabric I/O Naming (.xml) 217

OpenFPGA Documentation, Release 1.2.2022

Fig. 12.1: Example of a top-level wrapper: how it interfaces between SoC and an existing FPGA core fabric

12.15 Fabric Module Naming (.xml)

The XML-based description language is used to describe module names for an FPGA fabric, including:

• the built-in name or default name for each module when building an FPGA fabric

• the customized name which is given by users for each module, in place of the built-in names

Using the description language, users can customize the name for each module in an FPGA fabric, excluding test-
benches.

Under the root node <module_names>, naming rules can be defined line-by-line through syntax <module_name>.

<module_names>
<module_name default="<string>" given="<string>"/>

</module_names>

Note: If you do not need to rename a module of an FPGA fabric, there is no need to define it explicitly in the naming
rules. OpenFPGA can infer it.

218 Chapter 12. File Formats

OpenFPGA Documentation, Release 1.2.2022

12.15.1 Syntax

Detailed syntax are presented as follows.

default="<string>"

Define the default or built-in name of a module. This follows fixed naming rules of OpenFPGA. Suggest to run
command write_module_naming_rules to obtain an initial version for your fabric. For example,

default="cbx_1__2_"

given="<string>"

Define the customized name of a module, this is the final name will appear in netlists. For example,

given="cbx_corner_left_bottom"

12.16 Tile Organization (.xml)

The XML-based description language is used to describe how each tile is composed. For example, what programmable
blocks, connection blocks and switch blocks should be included.

Using the description language, users can customize the tiles of an FPGA fabric, as detailed as each component in each
tile.

Under the root node <tiles>, the detailes of tile organization can be described.

<tiles style="<string>"/>
</tiles>

12.16.1 Syntax

Detailed syntax are presented as follows.

style="<string>"

Specify the style of tile organization. Can be [top_left | top_right | bottom_left | bottom_right | custom]

Warning: Currently, only top_left is supported!

The top_left is a shortcut to define the organization for all the tiles. Fig. 12.2 shows an example of tiles in
the top-left sytle, where the programmable block locates in the top-left corner of all the tiles, surrounded by two
connection blocks and one switch blocks.

12.16. Tile Organization (.xml) 219

OpenFPGA Documentation, Release 1.2.2022

Fig. 12.2: An example of top-left style of a tile in FPGA fabric

12.17 Fabric Pin Physical Location File (.xml)

This file is generated by command write_fabric_pin_physical_location

The fabric pin physical location file aims to show

• Pin names of each module in an eFPGA fabric

• Preferred physical side of each pin on its module

This file is created for pin guidelines during physical design steps

An example of the file is shown as follows.

<pin_location>
<module name="sb_1__1_">
<loc pin="chany_bottom_in[0:0]" side="bottom"/>
<loc pin="chany_bottom_in[1:1]" side="bottom"/>
<loc pin="chany_bottom_in[2:2]" side="bottom"/>
<loc pin="chany_bottom_in[3:3]" side="bottom"/>
<loc pin="chany_bottom_in[4:4]" side="bottom"/>
<loc pin="chany_bottom_in[5:5]" side="bottom"/>
<loc pin="chany_bottom_in[6:6]" side="bottom"/>
<loc pin="chany_bottom_in[7:7]" side="bottom"/>
<loc pin="chany_bottom_in[8:8]" side="bottom"/>
<loc pin="chany_bottom_in[9:9]" side="bottom"/>
<loc pin="chany_bottom_in[10:10]" side="bottom"/>
<loc pin="chany_bottom_in[11:11]" side="bottom"/>
<loc pin="chany_bottom_in[12:12]" side="bottom"/>
<loc pin="chany_bottom_out[0:0]" side="bottom"/>

(continues on next page)

220 Chapter 12. File Formats

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

<loc pin="chany_bottom_out[1:1]" side="bottom"/>
<loc pin="chany_bottom_out[2:2]" side="bottom"/>
<loc pin="chany_bottom_out[3:3]" side="bottom"/>
<loc pin="chany_bottom_out[4:4]" side="bottom"/>
<loc pin="chany_bottom_out[5:5]" side="bottom"/>
<loc pin="chany_bottom_out[6:6]" side="bottom"/>
<loc pin="chany_bottom_out[7:7]" side="bottom"/>
<loc pin="chany_bottom_out[8:8]" side="bottom"/>
<loc pin="chany_bottom_out[9:9]" side="bottom"/>
<loc pin="chany_bottom_out[10:10]" side="bottom"/>
<loc pin="chany_bottom_out[11:11]" side="bottom"/>
<loc pin="chany_bottom_out[12:12]" side="bottom"/>
<loc pin="bottom_right_grid_left_width_0_height_0_subtile_0__pin_inpad_0_[0:0]" side=

→˓"bottom"/>
<loc pin="bottom_right_grid_left_width_0_height_0_subtile_1__pin_inpad_0_[0:0]" side=

→˓"bottom"/>
<loc pin="bottom_right_grid_left_width_0_height_0_subtile_2__pin_inpad_0_[0:0]" side=

→˓"bottom"/>
<loc pin="bottom_right_grid_left_width_0_height_0_subtile_3__pin_inpad_0_[0:0]" side=

→˓"bottom"/>
<loc pin="bottom_right_grid_left_width_0_height_0_subtile_4__pin_inpad_0_[0:0]" side=

→˓"bottom"/>
<loc pin="bottom_right_grid_left_width_0_height_0_subtile_5__pin_inpad_0_[0:0]" side=

→˓"bottom"/>
<loc pin="bottom_right_grid_left_width_0_height_0_subtile_6__pin_inpad_0_[0:0]" side=

→˓"bottom"/>
<loc pin="bottom_right_grid_left_width_0_height_0_subtile_7__pin_inpad_0_[0:0]" side=

→˓"bottom"/>
<loc pin="bottom_left_grid_right_width_0_height_0_subtile_0__pin_O_3_[0:0]" side=

→˓"bottom"/>
<loc pin="chanx_left_in[0:0]" side="left"/>
<loc pin="chanx_left_in[1:1]" side="left"/>
<loc pin="chanx_left_in[2:2]" side="left"/>
<loc pin="chanx_left_in[3:3]" side="left"/>
<loc pin="chanx_left_in[4:4]" side="left"/>
<loc pin="chanx_left_in[5:5]" side="left"/>
<loc pin="chanx_left_in[6:6]" side="left"/>
<loc pin="chanx_left_in[7:7]" side="left"/>
<loc pin="chanx_left_in[8:8]" side="left"/>
<loc pin="chanx_left_in[9:9]" side="left"/>
<loc pin="chanx_left_in[10:10]" side="left"/>
<loc pin="chanx_left_in[11:11]" side="left"/>
<loc pin="chanx_left_in[12:12]" side="left"/>
<loc pin="chanx_left_out[0:0]" side="left"/>
<loc pin="chanx_left_out[1:1]" side="left"/>
<loc pin="chanx_left_out[2:2]" side="left"/>
<loc pin="chanx_left_out[3:3]" side="left"/>
<loc pin="chanx_left_out[4:4]" side="left"/>
<loc pin="chanx_left_out[5:5]" side="left"/>
<loc pin="chanx_left_out[6:6]" side="left"/>
<loc pin="chanx_left_out[7:7]" side="left"/>
<loc pin="chanx_left_out[8:8]" side="left"/>

(continues on next page)

12.17. Fabric Pin Physical Location File (.xml) 221

OpenFPGA Documentation, Release 1.2.2022

(continued from previous page)

<loc pin="chanx_left_out[9:9]" side="left"/>
<loc pin="chanx_left_out[10:10]" side="left"/>
<loc pin="chanx_left_out[11:11]" side="left"/>
<loc pin="chanx_left_out[12:12]" side="left"/>
<loc pin="left_top_grid_bottom_width_0_height_0_subtile_0__pin_inpad_0_[0:0]" side=

→˓"left"/>
<loc pin="left_top_grid_bottom_width_0_height_0_subtile_1__pin_inpad_0_[0:0]" side=

→˓"left"/>
<loc pin="left_top_grid_bottom_width_0_height_0_subtile_2__pin_inpad_0_[0:0]" side=

→˓"left"/>
<loc pin="left_top_grid_bottom_width_0_height_0_subtile_3__pin_inpad_0_[0:0]" side=

→˓"left"/>
<loc pin="left_top_grid_bottom_width_0_height_0_subtile_4__pin_inpad_0_[0:0]" side=

→˓"left"/>
<loc pin="left_top_grid_bottom_width_0_height_0_subtile_5__pin_inpad_0_[0:0]" side=

→˓"left"/>
<loc pin="left_top_grid_bottom_width_0_height_0_subtile_6__pin_inpad_0_[0:0]" side=

→˓"left"/>
<loc pin="left_top_grid_bottom_width_0_height_0_subtile_7__pin_inpad_0_[0:0]" side=

→˓"left"/>
<loc pin="left_bottom_grid_top_width_0_height_0_subtile_0__pin_O_2_[0:0]" side="left

→˓"/>
</module>

</pin_location>

name="<string>"

The module name in FPGA fabric, which should be a valid module defined in output Verilog netlist.

Note: You should be find the exact module in the FPGA fabric if you output the Verilog netlists.

pin="<string>"

The name of the pin in FPGA fabric. Note that all the bus port will be flatten in this file.

Note: You should be find the exact pin in the module if you output the Verilog netlists.

side="<string>"

The physical side of the pin should appear on the perimeter of the module.

222 Chapter 12. File Formats

CHAPTER

THIRTEEN

UTILITIES

OpenFPGA contains a number of utility tools to help users to craft files.

13.1 Fabric Key Assistant

Fabric Key Assistant is a tool to help users to craft fabric key files (see details in Fabric Key (.xml)). Note that crafting
a fabric key is not an easy task for engineers, as its complexity grows exponentially with FPGA sizes. This tool is
developed to assist engineers when finalizing fabric key files. It can apply sanity checks on hand-crafted fabric key
files, helping engineers to correct and debug.

The tool can be found at /build/libs/libfabrickey/fabric_key_assistant

The tool includes the following options:

--reference <string>

Specifiy a reference fabric key file, which has been already validated by OpenFPGA. For example, the reference
fabric key can be a file which is written by OpenFPGA as a default key. The reference fabric key file is treated
as the baseline, on which the input fabric key file will be compared to.

Note: The reference fabric key should contain all the syntax, e.g., name, value and alias.

--input <string>

Specify the input fabric key file, which is typically hand-crafted by users. Sanity checks will be applied to the
input fabric key file by comparing the reference.

Note: The input fabric key should contain only the syntax alias.

--output <string>

Specify the output fabric key file, which is an updated version of the input fabric key file. Difference from
the input file, the output file contains name and value, which is added by linking the alias from input file to
reference file. For example, the reference fabric key includes a key:

<key id="1" name="tile_0__0_" value="5" alias="tile_4__2_"/>

while the input fabric key includes a key:

<key id="23" alias="tile_4__2_"/>

the resulting output fabric key file includes a key:

223

OpenFPGA Documentation, Release 1.2.2022

<key id="23" name="tile_0__0_" value="5" alias="tile_4__2_"/>

--verbose

To enable verbose output

--help

Show help desk

13.2 Module Rename Assistant

Module Rename Assistant is a tool to help users to craft module name files (see details in
file_formats_module_naming_files). This tool is useful to adapt module naming from a fabric to another, con-
sidering the two fabrics share the same building blocks, i.e., tile, routing blocks etc. For example, when engineers craft
a module naming file for a fabric A, and would like to migrate the module naming rules for anthor fabric B, module
naming rules have to be adapted due to the changes on default names of building blocks.

The tool can be found at /build/libs/libnamemanager/module_rename_assistant

The tool includes the following options:

--reference_fabricA_names <string>

Specifiy a reference module name file for fabric A. This is typically generated by OpenFPGA through the comm-
mand write_module_naming_rules. The reference fabric key file is treated as the baseline, on which the renamed
module file will be compared to.

--renamed_fabricA_names <string>

Specify the hand-crafted module name file for fabric A, which is typically hand-crafted by users.

--reference_fabricB_names <string>

Specifiy a reference module name file for fabric B. This is typically generated by OpenFPGA through the comm-
mand write_module_naming_rules. The reference fabric key file is treated as the baseline, on which the renamed
module file will be compared to.

--output <string>

Specify the renamed module name file for fabric B to be outputted. For example, the fabric A contains reference
names:

<module_name default="tile_1__1_" given="tile_4_"/>

while the renamed module for fabric A includes:

<module_name default="tile_1__1_" given="tile_big"/>

the fabric B shares the same given name tile_4_ but in a different default name.

<module_name default="tile_2__2_" given="tile_4_"/>

the resulting output renamed module file includes:

<module_name default="tile_2__2_" given="tile_big"/>

--verbose

To enable verbose output

224 Chapter 13. Utilities

OpenFPGA Documentation, Release 1.2.2022

--help

Show help desk

13.2. Module Rename Assistant 225

OpenFPGA Documentation, Release 1.2.2022

226 Chapter 13. Utilities

CHAPTER

FOURTEEN

VERSION NUMBER

14.1 Convention

OpenFPGA follows the semantic versioning, where the version number is in the form of

[Major].[Minor].[Patch]

For example, version 1.2.300 denotes

• One major milestone is achieved.

• Two minor milestone is achieved after the major revision 1.0.0

• 300 patches has been applied after the minor revision 1.2.0

14.2 Version Update Rules

Warning: Please discuss with maintainers before modifying major and minor numbers.

Warning: Please do not modify patch number manually.

To update the version number, please follow the rules:

• Major and minor version number are defined by maintainers

• Patch number is automatically updated through github actions. See detailed in the workflow file

Version updates are made in the following scenario

• When a minor milestone is achieved, the minor revision number can be increased by 1. The following condition
is considered as a minor milestone:

– a new feature has been developed.

– a critical patch has been applied.

– a sufficient number of small patches has been applied in the past quarter. In other words, the minor revision
will be updated by the end of each quarter as long as there are patches.

• When several minor milestones are achieved, the major revision number can be increased by 1. The following
condition is considered as a major milestone:

227

www.semver.org
https://github.com/lnis-uofu/OpenFPGA/blob/master/.github/workflows/patch_updater.yml

OpenFPGA Documentation, Release 1.2.2022

– significant improvements on Quality-of-Results (QoR).

– significant changes on user interface.

– a technical feature is developed and validated by the community, which can impact the complete design
flow.

228 Chapter 14. Version Number

CHAPTER

FIFTEEN

BACKWARD COMPATIBILITY

15.1 OpenFPGA v1.1

OpenFPGA v1.2 is a major upgrade over v1.1, which upgrades the internal VPR engine. The (VPR) architecture files
used with v1.1 may not be compatible with v1.2.

You can upgrade your architecture files with script

python3 openfpga_flow/scripts/arch_file_updater.py \
--input_file ${v1.1_arch_file} \
--output_file ${v1.2_compatible_arch_file}

Or, If you want to stay with v1.1, the final build was (tag: OpenFPGA:v1.1.541))

https://github.com/lnis-uofu/OpenFPGA/tree/v1.1.541

or you can download the docker image

docker pull ghcr.io/lnis-uofu/openfpga-master:v1.1.541

229

https://github.com/lnis-uofu/OpenFPGA/tree/v1.1.541

OpenFPGA Documentation, Release 1.2.2022

230 Chapter 15. Backward compatibility

CHAPTER

SIXTEEN

CI/CD SETUP

OpenFPGA implements CI/CD system using Github actions. The following figure shows the Actions implements flow.
The source building is skipped if there are changes only in openfpga_flow or docs directory, in which case the docker
image compiled for the latest master branch is used for running a regression.

Build regression test

The OpenFPGA source is compiled with the following set of compilers.

1. gcc-7

2. gcc-8

3. gcc-9

4. gcc-10

5. gcc-11

6. clang-6

7. clang-7

8. clang-8

9. clang-10

The docker images for these build environment are available on github packages.

Functional regression test

OpenFPGA maintains a set of functional tests to validate the different functionality. The test
are broadly catagories into basic_reg_test, fpga_verilog_reg_test, fpga_bitstream_reg_test,
fpga_sdc_reg_test, and fpga_spice_reg_test. A functional regression test is run for every commit on
every branch.

231

https://github.com/orgs/lnis-uofu/packages

OpenFPGA Documentation, Release 1.2.2022

16.1 How to debug failed regression test

In case the functional regression test fails, the actions script will collect all .log files from the task directory
and upload as a artifacts on github storage. These artifacts can be downloaded from the github website actions tab, for
more reference follow this article.

NOTE : The retention time of these artifacts is 1 day, so in case user want to reserve the failure log for longer duration
back it up locally

16.2 Release Docker Images

ghcr.io/lnis-uofu/openfpga-master:latest

This is a bleeding-edge release from the current master branch of OpenFPGA. It is updated automatically when-
ever there is activity on the master branch. Due to high development activity, we recommend the user to use the
bleeding-edge version to get access to all new features and report an issue in case there are any bugs.

16.3 CI after cloning repository

If you clone the repository the CI setup will still function, except the based images are still pulled from “lnis-uofu”
repository and the master branch of cloned repo will not push final docker image to any repository .

In case you want to host your own copies of OpenFPGA base images and final release create a github secret variable
with name DOCKER_REPO and set it to true. This will make ci script to download base images from your own repo
packages, and upload final release to the same.

If you don not want to use docker images based regression test and like to compile all the binaries for each CI run.
You can set IGNORE_DOCKER_TEST secrete variable to true.

Note: Once you add DOCKER_REPO variable, you need to generate base images. To do this trigger manual workflow
Build docker CI images

232 Chapter 16. CI/CD setup

https://docs.github.com/en/actions/managing-workflow-runs/downloading-workflow-artifacts

CHAPTER

SEVENTEEN

REGRESSION TESTS

Regression tests are designed to cover various technical features of the OpenFPGA projects, including but not limited
to

• Netlist generation

• Netlist verification

• Bitstream generation

Considering the large number of technical features, regression tests are categorized into several groups, which can be
found at openfpga_flow/regression_test_scripts/

17.1 Run a Test

Note: Make sure you have compiled OpenFPGA and set up your environment before reaching this step. See details
in getting_started_tutorials.

To run a regression test, users can execute a shell script (assume you are under the root directory of the project), for
example,

./openfpga_flow/regression_test_scripts/basic_reg_test.sh [OPTIONS]

Note: basic_reg_test can be replaced by other tests which are under openfpga_flow/
regression_test_scripts/

17.2 Test Options

There are a few options available when running the tests.

--debug

This option can turn on debug mode when running regression tests. By default it is off.

--show_thread_logs

This option can enable verbose output when running regression tests. By default it is off.

233

OpenFPGA Documentation, Release 1.2.2022

Note: To avoid massive outputs, suggest to run the tests with default options. In CI, always recommend to turn on the
debug and verbose options

--remove_run_dir all

This option is to remove all the previous run results for a specific regression test. Suggest to use when there are
limited disk space.

Note: Be careful before using this option! It may cause permanent loss on test results.

234 Chapter 17. Regression Tests

CHAPTER

EIGHTEEN

TCL API

OpenFPGA can be loaded to a Tcl shell in the format of shared library. OpenFPGA’s Tcl APIs are generated by SWIG
during compilation. By integrating OpenFPGA to Tcl, developers can utilize OpenFPGA commands in a common
shell with other EDA tools, considering most of modern EDA tools adopt Tcl as their user interface. Currently, Tcl 8.6
is supported. Other versions may also work.

Here are the steps to follow:

• Compile OpenFPGA with SWIG enabled. See details in How to Compile.

• The shared library of OpenFPGA is available under the build/openfpga/openfpgashell.so

• Launch a tcl shell and load the shared library. For example

load openfpga_shell.so

• Create a new OpenFPGA shell object. For example

std::OpenfpgaShell my_shell

• OpenFPGA command can be called by through a sub command run_command. For example, the command
read_openfpga_arch (see Setup OpenFPGA for details) is now run in the following way:

my_shell run_command "read_openfpga_arch --file ~/OpenFPGA/openfpga_flow/openfpga_arch/
→˓k4_N4_40nm_bank_openfpga.xml"

235

OpenFPGA Documentation, Release 1.2.2022

236 Chapter 18. Tcl API

CHAPTER

NINETEEN

CONTACT

General questions:

Prof. Pierre-Emmanuel Gaillardon

pierre-emmanuel.gaillardon@utah.edu

Technical Details about EDA and Software:

Dr. Xifan Tang

xifan@osfpga.org

Technical Details about physical design

Ganesh Gore

ganesh.gore@utah.edu

237

mailto:pierre-emmanuel.gaillardon@utah.edu
mailto:xifan@osfpga.org
mailto:ganesh.gore@utah.edu

OpenFPGA Documentation, Release 1.2.2022

238 Chapter 19. Contact

CHAPTER

TWENTY

ACKNOWLEDGEMENT

We are thankful to the organizations which support the OpenFPGA project and build the growing community.

239

OpenFPGA Documentation, Release 1.2.2022

240 Chapter 20. Acknowledgement

CHAPTER

TWENTYONE

PUBLICATIONS & REFERENCES

For more information on the VTR see vtr_doc or vtr_github

For more information on the Yosys see yosys_doc or yosys_github

For more information on the original FPGA architecture description language see xml_vtr

241

https://docs.verilogtorouting.org/en/latest/
https://github.com/verilog-to-routing/vtr-verilog-to-routing
http://www.clifford.at/yosys/
https://github.com/YosysHQ/yosys
https://docs.verilogtorouting.org/en/latest/arch/reference/

OpenFPGA Documentation, Release 1.2.2022

242 Chapter 21. Publications & References

CHAPTER

TWENTYTWO

INDICES AND TABLES

• genindex

• modindex

• search

243

OpenFPGA Documentation, Release 1.2.2022

244 Chapter 22. Indices and tables

BIBLIOGRAPHY

[BRM99] Vaughn Betz, Jonathan Rose, and Alexander Marquardt, editors. Architecture and CAD for Deep-Submicron
FPGAs. Kluwer Academic Publishers, Norwell, MA, USA, 1999. ISBN 0792384601.

[GW12] J. B. Goeders and S. J. E. Wilton. VersaPower: Power Estimation for Diverse FPGA Architec-
tures. In 2012 International Conference on Field-Programmable Technology, 229–234. Dec 2012.
doi:10.1109/FPT.2012.6412139.

[GTG21] Ganesh Gore, Xifan Tang, and Pierre-Emmanuel Gaillardon. A scalable and robust hierarchical floorplan-
ning to enable 24-hour prototyping for 100k-lut fpgas. In Proceedings of the 2021 International Symposium
on Physical Design, ISPD '21, 135–142. New York, NY, USA, 2021. Association for Computing Machinery.
URL: https://doi.org/10.1145/3439706.3447047, doi:10.1145/3439706.3447047.

[LAR11] Jason Luu, Jason Helge Anderson, and Jonathan Scott Rose. Architecture Description and Packing for
Logic Blocks with Hierarchy, Modes and Complex Interconnect. In Proceedings of the 19th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, FPGA '11, 227–236. New York, NY, USA,
2011. ACM. URL: http://doi.acm.org/10.1145/1950413.1950457, doi:10.1145/1950413.1950457.

[RLY+12] Jonathan Rose, Jason Luu, Chi Wai Yu, Opal Densmore, Jeffrey Goeders, Andrew Somerville, Kenneth B.
Kent, Peter Jamieson, and Jason Anderson. The VTR Project: Architecture and CAD for FPGAs from Ver-
ilog to Routing. In Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, FPGA '12, 77–86. New York, NY, USA, 2012. ACM. URL: http://doi.acm.org/10.1145/2145694.
2145708, doi:10.1145/2145694.2145708.

[TGM15] X. Tang, P. Gaillardon, and G. De Micheli. Fpga-spice: a simulation-based power estimation framework for
fpgas. In 2015 33rd IEEE International Conference on Computer Design (ICCD), volume, 696–703. Oct
2015. doi:10.1109/ICCD.2015.7357183.

[TGA+19] X. Tang, E. Giacomin, A. Alacchi, B. Chauviere, and P. Gaillardon. Openfpga: an opensource framework
enabling rapid prototyping of customizable fpgas. In 2019 29th International Conference on Field Pro-
grammable Logic and Applications (FPL), volume, 367–374. Sep. 2019. doi:10.1109/FPL.2019.00065.

[TGAG19] X. Tang, E. Giacomin, A. Alacchi, and P. Gaillardon. A study on switch block patterns for tileable fpga
routing architectures. In 2019 International Conference on Field-Programmable Technology (ICFPT), vol-
ume, 247–250. 2019. doi:10.1109/ICFPT47387.2019.00039.

[TGMG19] X. Tang, E. Giacomin, G. D. Micheli, and P. Gaillardon. FPGA-SPICE: A Simulation-Based Architecture
Evaluation Framework for FPGAs. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
27(3):637–650, March 2019. doi:10.1109/TVLSI.2018.2883923.

[TGC+20] Xifan Tang, Edouard Giacomin, Baudouin Chauviere, Aurélien Alacchi, and Pierre-Emmanuel Gaillardon.
Openfpga: an open-source framework for agile prototyping customizable fpgas. IEEE Micro, 40(4):41–48,
2020. doi:10.1109/MM.2020.2995854.

245

https://doi.org/10.1109/FPT.2012.6412139
https://doi.org/10.1145/3439706.3447047
https://doi.org/10.1145/3439706.3447047
http://doi.acm.org/10.1145/1950413.1950457
https://doi.org/10.1145/1950413.1950457
http://doi.acm.org/10.1145/2145694.2145708
http://doi.acm.org/10.1145/2145694.2145708
https://doi.org/10.1145/2145694.2145708
https://doi.org/10.1109/ICCD.2015.7357183
https://doi.org/10.1109/FPL.2019.00065
https://doi.org/10.1109/ICFPT47387.2019.00039
https://doi.org/10.1109/TVLSI.2018.2883923
https://doi.org/10.1109/MM.2020.2995854

OpenFPGA Documentation, Release 1.2.2022

[TGG+20] Xifan Tang, Ganesh Gore, Edouard Giacomin, Aurélien Alacchi, Baudouin Chauviere, and Pierre-
Emmanuel Gaillardon. Openfpga: towards automated prototyping for versatile fpgas. Workshop on Open-
Source EDA Technology, 2020.

246 Bibliography

INDEX

Symbols
--K

run_fpga_flow.py command line option, 57
--activity_file

command line option, 155
run_fpga_flow.py command line option, 58

--base_verilog
run_fpga_flow.py command line option, 58

--batch_execution
command line option, 149

--batch_mode
command line option, 152

--bitstream
command line option, 167

--black_box_ace
run_fpga_flow.py command line option, 58

--blif
command line option, 161

--bus_group_file
command line option, 167, 169, 171–173

--command
command line option, 152

--command_stream
command line option, 152

--compress_routing
command line option, 157

--constrain_cb
command line option, 174

--constrain_configurable_memory_outputs
command line option, 174

--constrain_global_port
command line option, 174

--constrain_grid
command line option, 174

--constrain_non_clock_global_port
command line option, 174

--constrain_routing_multiplexer_outputs
command line option, 175

--constrain_sb
command line option, 174

--constrain_switch_block_outputs
command line option, 175

--constrain_zero_delay_paths
command line option, 175

--debug
command line option, 60, 233
run_fpga_flow.py command line option, 57

--default_net_type
command line option, 166, 168–170, 172, 173

--default_tool_path
command line option, 59

--depth
command line option, 161, 166

--design_constraints
command line option, 163

--dump_waveform
command line option, 170

--duplicate_grid_pin
command line option, 158

--dut_module
command line option, 167, 169–171

--embed_bitstream
command line option, 169

--exclude
command line option, 156

--exclude_rr_info
command line option, 156

--exit_on_fail
command line option, 59

--explicit_port_mapping
command line option, 166, 168–170, 172, 173

--fabric_netlist_file_path
command line option, 167, 169, 172

--fast_configuration
command line option, 165, 168

--file
command line option, 149, 153–156, 160–162,

164, 166, 167, 169–176
--filter_value

command line option, 164
--fix

command line option, 156
--fix_route_chan_width

run_fpga_flow.py command line option, 58

247

OpenFPGA Documentation, Release 1.2.2022

--flatten_names
command line option, 174–176

--flow_config
run_fpga_flow.py command line option, 57

--format
command line option, 164

--fpga_fix_pins
command line option, 161

--fpga_io_map
command line option, 161

--frame_view
command line option, 159, 160

--from_file
command line option, 152

--generate_random_fabric_key
command line option, 158

--group_config_block
command line option, 158

--group_tile
command line option, 157

--gsb_names
command line option, 156

--hdl_dir
command line option, 173

--help
command line option, 149, 224

--hierarchical
command line option, 174

--ignore_global_nets_on_pins
command line option, 163

--include_module_keys
command line option, 160

--include_signal_init
command line option, 168, 169

--include_timing
command line option, 166

--input
command line option, 223

--instance_name
command line option, 160

--interactive
command line option, 149

--io_naming
command line option, 160

--keep_dont_care_bits
command line option, 165

--load_fabric_key
command line option, 158

--max_delay
command line option, 175

--max_route_width_retry
run_fpga_flow.py command line option, 58

--maxthreads
command line option, 59

--min_delay
command line option, 175

--min_route_chan_width
run_fpga_flow.py command line option, 58

--module
command line option, 162

--name_module_using_index
command line option, 158

--no_time_stamp
command line option, 161, 162, 164–168, 170–

173
--output

command line option, 223, 224
--output_hierarchy

command line option, 174
--path_only

command line option, 164
--pcf

command line option, 161
--pin_constraints_file

command line option, 155, 167, 169, 171–173
--pin_table

command line option, 161
--pin_table_direction_convention

command line option, 161
--power

run_fpga_flow.py command line option, 58
--power_tech

run_fpga_flow.py command line option, 58
--print_user_defined_template

command line option, 166
--read_file

command line option, 164
--reference

command line option, 223
--reference_benchmark_file_path

command line option, 167, 172, 173
--reference_fabricA_names

command line option, 224
--reference_fabricB_names

command line option, 224
--remove_run_dir

command line option, 234
--renamed_fabricA_names

command line option, 224
--report

command line option, 156
--run_dir

run_fpga_flow.py command line option, 57
--show_invalid_side

command line option, 162
--show_thread_logs

command line option, 233
--simulator

248 Index

OpenFPGA Documentation, Release 1.2.2022

command line option, 167
--skip_thread_logs

command line option, 59
--sort_gsb_chan_node_in_edges

command line option, 155
--test_run

command line option, 59
--testbench_type

command line option, 173
--time_unit

command line option, 173–176
--top_module

command line option, 170, 172
run_fpga_flow.py command line option, 57

--trim_path
command line option, 165

--unique
command line option, 156

--use_relative_path
command line option, 166, 168, 172, 173

--value_only
command line option, 165

--verbose
command line option, 153–157, 159–168, 170–

175, 224
--verific

run_fpga_flow.py command line option, 57
--version

command line option, 149
--write_fabric_key

command line option, 159
--write_file

command line option, 164
--yosys_tmpl

run_fpga_flow.py command line option, 57
--ys_rewrite_tmpl

run_fpga_flow.py command line option, 57
``pb``

command line option, 201
<accuracy

command line option, 88
<bank

command line option, 206, 207
<bench_name>_autocheck_top_tb.v

command line option, 186
<bench_name>_formal_random_top_tb.v

command line option, 186
<bench_name>_include_netlist.v

command line option, 186
<bench_name>_top_formal_verification.v

command line option, 186
<circuit_model

command line option, 94
<clock

command line option, 87
<design

command line option, 92
<design_technology

command line option, 96, 105, 108, 113, 115
<device_model

command line option, 92
<device_technology

command line option, 96
<input_buffer

command line option, 96
<interconnect

command line option, 144
<key

command line option, 203
<lib

command line option, 92
<logical_tile_name>.v

command line option, 183
<lut_input_buffer

command line option, 121
<lut_input_inverter

command line option, 121
<lut_intermediate_buffer

command line option, 121
<mode

command line option, 68
<module

command line option, 201
<monte_carlo

command line option, 89
<operating

command line option, 86
<operating_condition

command line option, 88
<output_buffer

command line option, 96
<output_log

command line option, 88
<pass_gate_logic

command line option, 97
<pb_type

command line option, 143
<physical_tile_name>.v

command line option, 183
<pmos|nmos

command line option, 92
<port

command line option, 97, 121, 122, 144
<programming

command line option, 87
<region

command line option, 201
<rise|fall

Index 249

OpenFPGA Documentation, Release 1.2.2022

command line option, 89, 91
<rram

command line option, 93
<runtime

command line option, 89
<tile

command line option, 140
<variation

command line option, 93
<wire_param

command line option, 135

A
arch<arch_label>

command line option, 61

B
bench<bench_label>

command line option, 61
bench<bench_label>_act

command line option, 62
bench<bench_label>_chan_width

command line option, 61
bench<bench_label>_read_verilog_options

command line option, 62
bench<bench_label>_top

command line option, 61
bench<bench_label>_verific_include_dir

command line option, 62
bench<bench_label>_verific_library_dir

command line option, 62
bench<bench_label>_verific_read_lib_name<lib_label>

command line option, 63
bench<bench_label>_verific_read_lib_src<lib_label>

command line option, 63
bench<bench_label>_verific_search_lib

command line option, 63
bench<bench_label>_verific_systemverilog_standard

command line option, 62
bench<bench_label>_verific_verilog_standard

command line option, 62
bench<bench_label>_verific_vhdl_standard

command line option, 62
bench<bench_label>_verilog

command line option, 62
bench<bench_label>_yosys

command line option, 61
bench<bench_label>_yosys_args

command line option, 62
bench<bench_label>_yosys_blackbox_modules

command line option, 63
bench<bench_label>_yosys_bram_map_rules

command line option, 62
bench<bench_label>_yosys_bram_map_verilog

command line option, 62
bench<bench_label>_yosys_cell_sim_systemverilog

command line option, 63
bench<bench_label>_yosys_cell_sim_verilog

command line option, 63
bench<bench_label>_yosys_cell_sim_vhdl

command line option, 63
bench<bench_label>_yosys_dff_map_verilog

command line option, 62
bench<bench_label>_yosys_dsp_map_parameters

command line option, 62
bench<bench_label>_yosys_dsp_map_verilog

command line option, 62
big_endian

command line option, 210
bitstream_offset

command line option, 200
Build

command line option, 231
BUILD_TYPE

command line option, 10

C
cbx_<x>_<y>.v

command line option, 184
cby_<x>_<y>.v

command line option, 184
ccff_head_indices

command line option, 75
circuit_model_name

command line option, 73, 143
clear-task-run

command line option, 16
CMAKE_FLAGS

command line option, 10
CMAKE_GOALS

command line option, 10
command line option

--activity_file, 155
--batch_execution, 149
--batch_mode, 152
--bitstream, 167
--blif, 161
--bus_group_file, 167, 169, 171–173
--command, 152
--command_stream, 152
--compress_routing, 157
--constrain_cb, 174
--constrain_configurable_memory_outputs,

174
--constrain_global_port, 174
--constrain_grid, 174
--constrain_non_clock_global_port, 174

250 Index

OpenFPGA Documentation, Release 1.2.2022

--constrain_routing_multiplexer_outputs,
175

--constrain_sb, 174
--constrain_switch_block_outputs, 175
--constrain_zero_delay_paths, 175
--debug, 60, 233
--default_net_type, 166, 168–170, 172, 173
--default_tool_path, 59
--depth, 161, 166
--design_constraints, 163
--dump_waveform, 170
--duplicate_grid_pin, 158
--dut_module, 167, 169–171
--embed_bitstream, 169
--exclude, 156
--exclude_rr_info, 156
--exit_on_fail, 59
--explicit_port_mapping, 166, 168–170, 172,

173
--fabric_netlist_file_path, 167, 169, 172
--fast_configuration, 165, 168
--file, 149, 153–156, 160–162, 164, 166, 167,

169–176
--filter_value, 164
--fix, 156
--flatten_names, 174–176
--format, 164
--fpga_fix_pins, 161
--fpga_io_map, 161
--frame_view, 159, 160
--from_file, 152
--generate_random_fabric_key, 158
--group_config_block, 158
--group_tile, 157
--gsb_names, 156
--hdl_dir, 173
--help, 149, 224
--hierarchical, 174
--ignore_global_nets_on_pins, 163
--include_module_keys, 160
--include_signal_init, 168, 169
--include_timing, 166
--input, 223
--instance_name, 160
--interactive, 149
--io_naming, 160
--keep_dont_care_bits, 165
--load_fabric_key, 158
--max_delay, 175
--maxthreads, 59
--min_delay, 175
--module, 162
--name_module_using_index, 158
--no_time_stamp, 161, 162, 164–168, 170–173

--output, 223, 224
--output_hierarchy, 174
--path_only, 164
--pcf, 161
--pin_constraints_file, 155, 167, 169, 171–

173
--pin_table, 161
--pin_table_direction_convention, 161
--print_user_defined_template, 166
--read_file, 164
--reference, 223
--reference_benchmark_file_path, 167, 172,

173
--reference_fabricA_names, 224
--reference_fabricB_names, 224
--remove_run_dir, 234
--renamed_fabricA_names, 224
--report, 156
--show_invalid_side, 162
--show_thread_logs, 233
--simulator, 167
--skip_thread_logs, 59
--sort_gsb_chan_node_in_edges, 155
--test_run, 59
--testbench_type, 173
--time_unit, 173–176
--top_module, 170, 172
--trim_path, 165
--unique, 156
--use_relative_path, 166, 168, 172, 173
--value_only, 165
--verbose, 153–157, 159–168, 170–175, 224
--version, 149
--write_fabric_key, 159
--write_file, 164
``pb``, 201
<accuracy, 88
<bank, 206, 207
<bench_name>_autocheck_top_tb.v, 186
<bench_name>_formal_random_top_tb.v, 186
<bench_name>_include_netlist.v, 186
<bench_name>_top_formal_verification.v,

186
<circuit_model, 94
<clock, 87
<design, 92
<design_technology, 96, 105, 108, 113, 115
<device_model, 92
<device_technology, 96
<input_buffer, 96
<interconnect, 144
<key, 203
<lib, 92
<logical_tile_name>.v, 183

Index 251

OpenFPGA Documentation, Release 1.2.2022

<lut_input_buffer, 121
<lut_input_inverter, 121
<lut_intermediate_buffer, 121
<mode, 68
<module, 201
<monte_carlo, 89
<operating, 86
<operating_condition, 88
<output_buffer, 96
<output_log, 88
<pass_gate_logic, 97
<pb_type, 143
<physical_tile_name>.v, 183
<pmos|nmos, 92
<port, 97, 121, 122, 144
<programming, 87
<region, 201
<rise|fall, 89, 91
<rram, 93
<runtime, 89
<tile, 140
<variation, 93
<wire_param, 135
arch<arch_label>, 61
bench<bench_label>, 61
bench<bench_label>_act, 62
bench<bench_label>_chan_width, 61
bench<bench_label>_read_verilog_options,

62
bench<bench_label>_top, 61
bench<bench_label>_verific_include_dir,

62
bench<bench_label>_verific_library_dir,

62
bench<bench_label>_verific_read_lib_name<lib_label>,

63
bench<bench_label>_verific_read_lib_src<lib_label>,

63
bench<bench_label>_verific_search_lib, 63
bench<bench_label>_verific_systemverilog_standard,

62
bench<bench_label>_verific_verilog_standard,

62
bench<bench_label>_verific_vhdl_standard,

62
bench<bench_label>_verilog, 62
bench<bench_label>_yosys, 61
bench<bench_label>_yosys_args, 62
bench<bench_label>_yosys_blackbox_modules,

63
bench<bench_label>_yosys_bram_map_rules,

62
bench<bench_label>_yosys_bram_map_verilog,

62

bench<bench_label>_yosys_cell_sim_systemverilog,
63

bench<bench_label>_yosys_cell_sim_verilog,
63

bench<bench_label>_yosys_cell_sim_vhdl,
63

bench<bench_label>_yosys_dff_map_verilog,
62

bench<bench_label>_yosys_dsp_map_parameters,
62

bench<bench_label>_yosys_dsp_map_verilog,
62

big_endian, 210
bitstream_offset, 200
Build, 231
BUILD_TYPE, 10
cbx_<x>_<y>.v, 184
cby_<x>_<y>.v, 184
ccff_head_indices, 75
circuit_model_name, 73, 143
clear-task-run, 16
CMAKE_FLAGS, 10
CMAKE_GOALS, 10
Comments, 149
concat_pass_wire, 71
concat_wire, 71
content, 200
Continued, 149
core_name, 217
create-task, 15
default, 219
default_path, 200
default_segment, 213
default_switch, 213
default_val, 97
default_value, 191
dir, 207
direction, 217
end_x, 214
end_y, 214
fabric_netlists.v, 183
file, 200
fpga_defines.v, 183
fpga_flow, 60
fpga_top.v, 183
frame_based, 197, 199
Functional, 231
General-purpose, 99, 103
ghcr.io/lnis-uofu/openfpga-master:latest,

232
given, 219
Global, 99
goto_task, 15
GPIO_type, 212

252 Index

OpenFPGA Documentation, Release 1.2.2022

id, 210, 211
interconnection_type, 82
inv_buf_passgate.v, 184
is_config_enable, 97
is_dummy, 217
is_global, 97
is_mode_select_bitstream, 200
list-tasks, 15
local_encoder.v, 184
luts.v, 184
mapped_pin, 212
memories.v, 184
memory_bank, 195, 198
muxes.v, 184
name, 74, 192, 199, 200, 207, 210, 211, 214, 222
net, 191, 192, 207
num_banks, 80
num_regions, 74
num_wl, 74
number_of_bits, 210
opin2all_sides, 69
orientation, 212
pad, 208
pb_type, 192
physical_mode_pin_initial_offset, 144
physical_mode_pin_rotate_offset, 144
physical_mode_port_rotate_offset, 144
physical_pb_type_index_factor, 143
pin, 191, 192, 222
port, 75
port_name, 212
power_analysis, 60
power_tech_file, 60
protocol, 80
ql_memory_bank, 195, 196
run-modelsim, 16
run-regression-local, 16
run-task, 15
sb_<x>_<y>.v, 184
scan_chain, 195
set_io, 211
shrink_boundary, 69
side, 222
source, 199
spice_netlist, 94
spice_output, 60
start_x, 214
start_y, 214
style, 219
sub_Fs, 72
sub_type, 72
tap, 215
through_channel, 69
tile_<x>__<y>_.v, 183

tile_pin, 215
tileable, 69
timeout_each_job, 60
top_name, 217
type, 73, 127
unset-openfpga, 16
user_defined_templates.v, 184
vanilla, 195
verific, 60
verilog_output, 60
width, 214
wires.v, 184
x, 208, 215
x_dir, 83
y, 208, 215
y_dir, 83
z, 208

Comments
command line option, 149

concat_pass_wire
command line option, 71

concat_wire
command line option, 71

content
command line option, 200

Continued
command line option, 149

core_name
command line option, 217

create-task
command line option, 15

D
default

command line option, 219
default_path

command line option, 200
default_segment

command line option, 213
default_switch

command line option, 213
default_val

command line option, 97
default_value

command line option, 191
dir

command line option, 207
direction

command line option, 217

E
end_x

command line option, 214
end_y

Index 253

OpenFPGA Documentation, Release 1.2.2022

command line option, 214

F
fabric_netlists.v

command line option, 183
file

command line option, 200
fpga_defines.v

command line option, 183
fpga_flow

command line option, 60
fpga_top.v

command line option, 183
frame_based

command line option, 197, 199
Functional

command line option, 231

G
General-purpose

command line option, 99, 103
ghcr.io/lnis-uofu/openfpga-master:latest

command line option, 232
given

command line option, 219
Global

command line option, 99
goto_task

command line option, 15
GPIO_type

command line option, 212

I
id

command line option, 210, 211
interconnection_type

command line option, 82
inv_buf_passgate.v

command line option, 184
is_config_enable

command line option, 97
is_dummy

command line option, 217
is_global

command line option, 97
is_mode_select_bitstream

command line option, 200

L
list-tasks

command line option, 15
local_encoder.v

command line option, 184

luts.v
command line option, 184

M
mapped_pin

command line option, 212
memories.v

command line option, 184
memory_bank

command line option, 195, 198
muxes.v

command line option, 184

N
name

command line option, 74, 192, 199, 200, 207,
210, 211, 214, 222

net
command line option, 191, 192, 207

num_banks
command line option, 80

num_regions
command line option, 74

num_wl
command line option, 74

number_of_bits
command line option, 210

O
opin2all_sides

command line option, 69
orientation

command line option, 212

P
pad

command line option, 208
pb_type

command line option, 192
physical_mode_pin_initial_offset

command line option, 144
physical_mode_pin_rotate_offset

command line option, 144
physical_mode_port_rotate_offset

command line option, 144
physical_pb_type_index_factor

command line option, 143
pin

command line option, 191, 192, 222
port

command line option, 75
port_name

command line option, 212

254 Index

OpenFPGA Documentation, Release 1.2.2022

power_analysis
command line option, 60

power_tech_file
command line option, 60

protocol
command line option, 80

Q
ql_memory_bank

command line option, 195, 196

R
run_fpga_flow.py command line option

--K, 57
--activity_file, 58
--base_verilog, 58
--black_box_ace, 58
--debug, 57
--fix_route_chan_width, 58
--flow_config, 57
--max_route_width_retry, 58
--min_route_chan_width, 58
--power, 58
--power_tech, 58
--run_dir, 57
--top_module, 57
--verific, 57
--yosys_tmpl, 57
--ys_rewrite_tmpl, 57

run-modelsim
command line option, 16

run-regression-local
command line option, 16

run-task
command line option, 15

S
sb_<x>_<y>.v

command line option, 184
scan_chain

command line option, 195
set_io

command line option, 211
shrink_boundary

command line option, 69
side

command line option, 222
source

command line option, 199
spice_netlist

command line option, 94
spice_output

command line option, 60
start_x

command line option, 214
start_y

command line option, 214
style

command line option, 219
sub_Fs

command line option, 72
sub_type

command line option, 72

T
tap

command line option, 215
through_channel

command line option, 69
tile_<x>__<y>_.v

command line option, 183
tile_pin

command line option, 215
tileable

command line option, 69
timeout_each_job

command line option, 60
top_name

command line option, 217
type

command line option, 73, 127

U
unset-openfpga

command line option, 16
user_defined_templates.v

command line option, 184

V
vanilla

command line option, 195
verific

command line option, 60
verilog_output

command line option, 60

W
width

command line option, 214
wires.v

command line option, 184

X
x

command line option, 208, 215
x_dir

command line option, 83

Index 255

OpenFPGA Documentation, Release 1.2.2022

Y
y

command line option, 208, 215
y_dir

command line option, 83

Z
z

command line option, 208

256 Index

	Why OpenFPGA?
	Fully Customizable Architecture
	FPGA-Verilog
	FPGA-SDC
	FPGA-Bitstream
	FPGA-SPICE

	Technical Highlights
	Supported Circuit Designs
	Supported FPGA Architectures
	Supported Verilog Modeling

	Getting Started
	How to Compile
	Supported Operating Systems
	Build Steps
	Build Options
	Dependencies
	Ubuntu 20.04
	Ubuntu 22.04

	Running with pre-built docker image

	OpenFPGA Shell Commands
	Commands

	Supported Tools
	Internal Tools
	Third-Party Tools

	Design Flows
	Generate Fabric Netlists
	Prepare Task Configuration File
	Run OpenFPGA Task
	Run icarus iVerilog Compilation

	From Verilog to Verification
	Netlist Generation
	Run icarus iVerilog Simulation
	Through OpenFPGA Scripts
	Manual Method
	Debugging Tips

	Run Modelsim Simulation
	Through OpenFPGA Scripts
	Manual Method

	From Verilog to GDSII

	Architecture Modeling
	A Quick Start
	Adapt VPR Architecture
	Physical I/O Modeling
	Tileable Architecture

	Craft OpenFPGA Architecture
	Overview on the Structure
	Technology Library Definition
	Circuit Library Definition
	Annotation on VPR Architecture

	Simulation Settings

	Integrating Custom Verilog Modules with user_defined_template.v
	Introduction and Setup
	Motivation
	Fixing the Error
	Fixing the Error with user_defined_template.v

	Build an FPGA fabric using Standard Cell Libraries
	Introduction
	Create and Verify the OpenFPGA Circuit Model
	Clone Skywater PDK into OpenFPGA
	Create and Verify the Standard Cell Library Circuit Model

	Creating Spypads Using XML Syntax
	Introduction
	Pre-Built Spypads
	Building Spypads
	Conclusion

	OpenFPGA Flow
	OpenFPGA Flow
	Basic Usage
	OpenFPGA Variables
	Output
	Advanced Usage
	Detailed Command-line Options
	General Arguments
	ACE Arguments
	VPR RUN Arguments
	blif_vpr_flow Arguments

	OpenFPGA Flow Configuration file

	OpenFPGA Task
	Task Directory
	Running OpenFPGA Task:
	Command-line Options
	Creating a new OpenFPGA Task
	Configuring a new OpenFPGA Task
	General Section
	OpenFPGA_SHELL Sections
	Architectures Sections
	Benchmarks Sections
	Synthesis Parameter Sections
	Script Parameter Sections

	Example Task Configuration File

	OpenFPGA Architecture Description
	General Hierarchy
	OpenFPGA Architecture Description File
	OpenFPGA Simulation Setting File

	Additional Syntax to Original VPR XML
	Models, Complex blocks and Physical Tiles
	Layout
	Switch Block
	Routing Segments

	Configuration Protocol
	Template
	Configuration Chain Example
	Frame-based Example
	Memory bank Example
	QuickLogic Memory bank Example
	Standalone SRAM Example

	Inter-Tile Direct Interconnection extensions
	Directlist
	Example
	Truth table

	Simulation settings
	Clock Setting
	Operating clock setting
	Programming clock setting

	Simulator Option
	Operating condition
	Output logs
	Simulation Accuracy
	Simulation Speed

	Monte Carlo Simulation
	Measurement Setting
	Stimulus Setting

	Technology library
	Device Library
	Variation Library

	Circuit Library
	Circuit Model
	Design Technology
	Device Technology
	Input and Output Buffers
	Pass Gate Logic
	Circuit Port
	FPGA I/O Port

	Circuit model examples
	Inverters and Buffers
	Template
	Inverter 1x Example
	Power-gated Inverter 1x example
	Buffer 2x example
	Power-gated Buffer 4x example
	Tapered inverter 16x example
	Tapered buffer 64x example

	Pass-gate Logic
	Template
	Transmission-gate Example
	Pass-transistor Example

	SRAMs
	Template
	SRAM with BL/WL
	SRAM with BL/WL/WLR
	Configurable Latch

	Logic gates
	Template
	2-input AND Gate
	2-input OR Gate
	MUX2 Gate

	Multiplexers
	Template
	One-level Multiplexer
	Tree-like Multiplexer
	Standard Cell Multiplexer
	Multi-level Multiplexer
	Multiplexer with Local Encoder
	Multiplexer with Constant Input

	Look-Up Tables
	Template
	Single-Output LUT
	Standard Fracturable LUT
	Native Fracturable LUT
	LUT with Harden Logic

	Datapath Flip-Flops
	Template
	D-type Flip-Flop
	Multi-mode Flip-Flop

	Configuration Chain Flip-Flop
	Template
	Regular Configuration-chain Flip-flop
	Configuration-chain Flip-flop with Configure Enable Signals
	Configuration-chain Flip-flop with Scan Input

	Hard Logics
	Template
	Full Adder
	Multiplier
	Multi-mode Multiplier
	Dual Port Block RAM
	Multi-mode Dual Port Block RAM

	Routing Wire Segments
	Template
	Routing Track Wire Example

	I/O pads
	Template
	General Purpose I/O

	Bind circuit modules to VPR architecture
	Switch Blocks
	Connection Blocks
	Channel Wire Segments
	Physical Tile Annotation
	Primitive Blocks inside Multi-mode Configurable Logic Blocks

	Fabric Key
	Key Generation
	File Format

	OpenFPGA Shell
	Launch OpenFPGA Shell
	OpenFPGA Script Format
	Commands
	Basic Commands
	version
	help
	source
	ext_exec
	exit

	VPR Commands
	vpr
	vpr_standalone

	Setup OpenFPGA
	read_openfpga_arch
	write_openfpga_arch
	read_openfpga_simulation_setting
	write_openfpga_simulation_setting
	read_openfpga_bitstream_setting
	write_openfpga_bitstream_setting
	read_openfpga_clock_arch
	write_openfpga_clock_arch
	append_clock_rr_graph
	route_clock_rr_graph
	link_openfpga_arch
	write_gsb_to_xml
	check_netlist_naming_conflict
	pb_pin_fixup
	lut_truth_table_fixup
	build_fabric
	write_fabric_key
	add_fpga_core_to_fabric
	write_fabric_hierarchy
	write_fabric_io_info
	pcf2place
	rename_modules
	write_module_naming_rules
	write_fabric_pin_physical_location

	FPGA-Bitstream
	repack
	build_architecture_bitstream
	build_fabric_bitstream
	write_fabric_bitstream
	write_io_mapping
	report_bitstream_distribution

	FPGA-Verilog
	write_fabric_verilog
	write_full_testbench
	write_preconfigured_fabric_wrapper
	write_testbench_template
	write_testbench_io_connection
	write_mock_fpga_wrapper
	write_preconfigured_testbench
	write_simulation_task_info

	FPGA-SDC
	write_pnr_sdc
	write_configuration_chain_sdc
	write_sdc_disable_timing_configure_ports
	write_analysis_sdc

	FPGA-SPICE
	Command-line Options
	Hierarchy of SPICE Output Files
	Run SPICE simulation
	Create Customized SPICE Modules

	FPGA-Verilog
	Fabric Netlists
	Top-level Netlists
	Tiles
	Logic Blocks
	Routing Blocks
	Primitive Modules

	Testbench
	Full Testbench
	Formal-oriented Testbench
	General Usage

	Mock FPGA Wrapper

	FPGA-Bitstream
	Generic Bitstream
	Usage
	File Format

	Fabric-dependent Bitstream
	Usage
	Plain Text File Format
	XML File Format

	File Formats
	Pin Constraints File (.xml)
	Repack Design Constraints (.xml)
	Pin constraint
	Ignore net

	Architecture Bitstream (.xml)
	Fabric-dependent Bitstream
	Plain text (.bit)
	XML (.xml)

	Bitstream Setting (.xml)
	pb_type-related Settings
	Interconnection-related Settings
	non_fabric-related Settings

	Fabric Key (.xml)
	Configurable Module
	Configurable Region
	Configurable Block
	BL Shift Register Banks
	WL Shift Register Banks

	I/O Mapping File (.xml)
	I/O Information File (.xml)
	Bitstream Distribution File (.xml)
	Region-Level Bitstream Distribution
	Block-Level Bitstream Distribution

	Bus Group File (.xml)
	Bus-related Syntax
	Pin-related Syntax

	Pin Constraints File (.pcf)
	Pin Table File (.csv)
	Clock Network (.xml)
	General Settings
	Clock Network Settings
	Clock Spine Settings
	Switch Point Settings
	Tap Point Settings

	Fabric I/O Naming (.xml)
	Syntax
	Example

	Fabric Module Naming (.xml)
	Syntax

	Tile Organization (.xml)
	Syntax

	Fabric Pin Physical Location File (.xml)

	Utilities
	Fabric Key Assistant
	Module Rename Assistant

	Version Number
	Convention
	Version Update Rules

	Backward compatibility
	OpenFPGA v1.1

	CI/CD setup
	How to debug failed regression test
	Release Docker Images
	CI after cloning repository

	Regression Tests
	Run a Test
	Test Options

	Tcl API
	Contact
	Acknowledgement
	Publications & References
	Indices and tables
	Bibliography
	Index

